Abstract

Lack of efficient routes to modulate the propagation properties of the terahertz (THz) wave is a major barrier for the further development of THz technology. In recent years, two dimensional transition metal dichalcogenides (2D TMDCs) were applied to the design of effective THz modulator by forming heterostructure with Si. Here, we experimentally demonstrate an optical controlled THz modulator consisting of liquid-exfoliated WS2 nanosheets and a silicon substrate (WS2-Si). By innovatively depositing liquid-exfoliated WS2 nanosheets on the Si instead of growing by chemical vapor deposition (CVD) method, both of the size and the thickness of WS2 film is controlled. The WS2-Si sample presents a flat modulation depth from 0.2 THz to 1.6 THz. The modulation depth reaches 56.7% under a 50 mW pumping power, which is over 5 times enhanced compared with that of the Si substrate. With the increase of illumination power, the modulation depth continues to increase, finally reaching up to 94.8% under 470 mW. Besides, the WS2-Si sample also achieves ~80% modulation depth under 450 nm illumination, indicating its ability to operate under either of wavelength in visible spectra. Moreover, we compare the sample to the reported modulators including CVD growth TMDCs-Si ones and find our sample has comparable modulation effects while is much easy to be prepared. Therefore, we believe our work is meaningful to provide an alternative route to achieve effective modulation of THz waves by adopting liquid-exfoliated 2D materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of MoSe2 nanosheets: characterization, simulation and application for Q-switching

Zhenlu Sun, Hongwei Chu, Ying Li, Lijie Liu, Shengzhi Zhao, Guiqiu Li, and Dechun Li
Opt. Mater. Express 9(8) 3494-3503 (2019)

Large-energy passively Q-switched Er-doped fiber laser based on CVD-Bi2Se3 as saturable absorber

Nannan Xu, Na Ming, Xile Han, Baoyuan Man, and Huanian Zhang
Opt. Mater. Express 9(2) 373-383 (2019)

Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited]

Gaozhong Wang, Saifeng Zhang, Xiaoyan Zhang, Long Zhang, Ya Cheng, Daniel Fox, Hongzhou Zhang, Jonathan N. Coleman, Werner J. Blau, and Jun Wang
Photon. Res. 3(2) A51-A55 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
    [Crossref]
  2. R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).
  3. E. P. J. Parrott, Y. Sun, and E. Pickwell-Macpherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1), 66–76 (2011).
    [Crossref]
  4. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  5. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  6. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  7. M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: A brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
    [Crossref]
  8. I. Chatzakis, Z. Li, A. V. Benderskii, and S. B. Cronin, “Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene,” Nanoscale 9(4), 1721–1726 (2017).
    [Crossref] [PubMed]
  9. S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
    [Crossref] [PubMed]
  10. Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
    [Crossref] [PubMed]
  11. D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).
  12. D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
    [Crossref]
  13. R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
    [Crossref] [PubMed]
  14. H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  15. W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
    [Crossref]
  16. Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
    [Crossref] [PubMed]
  17. B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
    [Crossref]
  18. I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
    [Crossref]
  19. L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
    [Crossref]
  20. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
    [Crossref]
  21. J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
    [Crossref] [PubMed]
  22. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
    [Crossref] [PubMed]
  23. K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,” Angew. Chem. Int. Ed. Engl. 50(46), 10839–10842 (2011).
    [Crossref] [PubMed]
  24. L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
    [Crossref]
  25. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
    [Crossref] [PubMed]
  26. X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
    [Crossref]
  27. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
    [Crossref] [PubMed]
  28. F. Lin, W. Shi, X. He, and X. Zhong, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331 (2016).
    [Crossref]
  29. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
    [Crossref] [PubMed]
  30. Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  31. Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
    [Crossref]
  32. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
    [Crossref]
  33. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  34. X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
    [Crossref] [PubMed]
  35. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
    [Crossref] [PubMed]
  36. H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
    [Crossref]
  37. C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, “Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2 : Experiments and theory,” Phys. Rev. B 89(20), 205436 (2014).
    [Crossref]
  38. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John wiley & sons, 2006).
  39. M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
    [Crossref]
  40. L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
    [Crossref]
  41. D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2.,” ACS Nano 8(8), 8174–8181 (2014).
    [Crossref] [PubMed]
  42. W. Zheng, F. Fan, M. Chen, S. Chen, and S.-J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
    [Crossref]
  43. P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
    [Crossref] [PubMed]
  44. Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
    [Crossref] [PubMed]

2017 (3)

I. Chatzakis, Z. Li, A. V. Benderskii, and S. B. Cronin, “Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene,” Nanoscale 9(4), 1721–1726 (2017).
[Crossref] [PubMed]

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

2016 (9)

W. Zheng, F. Fan, M. Chen, S. Chen, and S.-J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

F. Lin, W. Shi, X. He, and X. Zhong, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331 (2016).
[Crossref]

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

2015 (6)

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

2014 (7)

D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2.,” ACS Nano 8(8), 8174–8181 (2014).
[Crossref] [PubMed]

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
[Crossref]

C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, “Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2 : Experiments and theory,” Phys. Rev. B 89(20), 205436 (2014).
[Crossref]

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

2013 (4)

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: A brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

2012 (2)

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
[Crossref] [PubMed]

2011 (3)

K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,” Angew. Chem. Int. Ed. Engl. 50(46), 10839–10842 (2011).
[Crossref] [PubMed]

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

E. P. J. Parrott, Y. Sun, and E. Pickwell-Macpherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1), 66–76 (2011).
[Crossref]

2009 (3)

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2004 (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

2000 (2)

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[Crossref]

1995 (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Allain, A.

D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2.,” ACS Nano 8(8), 8174–8181 (2014).
[Crossref] [PubMed]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Averitt, R. D.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Azad, A. K.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Bao, Q.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Baumgärtner, S.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Beere, H. E.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Beigang, R.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Benderskii, A. V.

I. Chatzakis, Z. Li, A. V. Benderskii, and S. B. Cronin, “Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene,” Nanoscale 9(4), 1721–1726 (2017).
[Crossref] [PubMed]

Biedron, S. G.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Blighe, F. M.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Boland, J. J.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Braeuninger-Weimer, P.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

Brener, I.

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

Brodyanski, A.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
[Crossref] [PubMed]

Byrne, M.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Cao, Y.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Castro Neto, A. H.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Chan, W.

H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
[Crossref]

C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, “Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2 : Experiments and theory,” Phys. Rev. B 89(20), 205436 (2014).
[Crossref]

Chan, W. L.

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

Chang, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Chang, S.-J.

W. Zheng, F. Fan, M. Chen, S. Chen, and S.-J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Chatzakis, I.

I. Chatzakis, Z. Li, A. V. Benderskii, and S. B. Cronin, “Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene,” Nanoscale 9(4), 1721–1726 (2017).
[Crossref] [PubMed]

Chen, H.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Chen, M.

W. Zheng, F. Fan, M. Chen, S. Chen, and S.-J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Chen, S.

W. Zheng, F. Fan, M. Chen, S. Chen, and S.-J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Chen, T.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Chen, Z.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Cheng, L.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Cheong, S. A.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Chia, E. E.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Cich, M. J.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

Coleman, J. N.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Cronin, S. B.

I. Chatzakis, Z. Li, A. V. Benderskii, and S. B. Cronin, “Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene,” Nanoscale 9(4), 1721–1726 (2017).
[Crossref] [PubMed]

Dawson, P.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

De, S.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Degl’Innocenti, R.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Du, L.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Duesberg, G.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Duesberg, G. S.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Dumcenco, D.

D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2.,” ACS Nano 8(8), 8174–8181 (2014).
[Crossref] [PubMed]

Dyjak, S.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Ellrich, F.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Fan, F.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

W. Zheng, F. Fan, M. Chen, S. Chen, and S.-J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Fan, Y.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Feldmann, J.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Fernández-Merino, M. J.

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

Ferrari, A. C.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Fu, Q.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Gan, S.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Garcia-Pomar, J. L.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
[Crossref] [PubMed]

Geng, Z.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Goodhue, R.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Griffiths, J. P.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

Gu, C.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
[Crossref]

Gu, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Guardia, L.

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

Gun’Ko, Y. K.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Haakestad, M. W.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Han, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

He, H.

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

He, K.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

He, T.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

He, X.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

F. Lin, W. Shi, X. He, and X. Zhong, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331 (2016).
[Crossref]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Hecker, N. E.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Heinz, T. F.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Hempel, M.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hernandez, Y.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hofmann, S.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Höh, M.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
[Crossref] [PubMed]

Holland, B.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Hone, J.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Hou, L.

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

Hou, Y.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Huang, H.

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

Huang, Y.-S.

D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2.,” ACS Nano 8(8), 8174–8181 (2014).
[Crossref] [PubMed]

Hubsch, D.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Hutchison, J.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Jessop, D. S.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Jie, J.

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kamboj, V. S.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

Karlsson, L. S.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Kartaloglu, T.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Kidambi, P. R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Kindness, S. J.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

King, P. J.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Kis, A.

D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2.,” ACS Nano 8(8), 8174–8181 (2014).
[Crossref] [PubMed]

Klimov, V. I.

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[Crossref]

Koch, M.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koschny, T.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Krishnamurthy, S.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

La-o-Vorakiat, C.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Leaw, J.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Lee, C.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Lee, G. H.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Lee, S.

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, H.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Li, J.

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: A brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Li, Q.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Li, S.

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Li, Z.

I. Chatzakis, Z. Li, A. V. Benderskii, and S. B. Cronin, “Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene,” Nanoscale 9(4), 1721–1726 (2017).
[Crossref] [PubMed]

Libon, I. H.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Lin, F.

Lin, H.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

Liu, J.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Liu, W. W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Liu, Y.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Loh, K. P.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Lotya, M.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Luo, L.

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Luo, Z.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Lv, L.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Ma, C.

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Manolatou, C.

C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, “Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2 : Experiments and theory,” Phys. Rev. B 89(20), 205436 (2014).
[Crossref]

H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
[Crossref]

Mao, N. N.

K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,” Angew. Chem. Int. Ed. Engl. 50(46), 10839–10842 (2011).
[Crossref] [PubMed]

Mao, Q.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Martínez-Alonso, A.

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

McGovern, I. T.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Miao, Y.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Mittendorff, M.

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Mittleman, D. M.

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

Murphy, T. E.

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Nicolosi, V.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Niraj, P.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Ospald, F.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Ovchinnikov, D.

D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2.,” ACS Nano 8(8), 8174–8181 (2014).
[Crossref] [PubMed]

Ozbay, E.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Padilla, W. J.

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: A brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Palka, N.

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Pan, X.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
[Crossref]

Paredes, J. I.

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

Parrott, E. P. J.

E. P. J. Parrott, Y. Sun, and E. Pickwell-Macpherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1), 66–76 (2011).
[Crossref]

Peng, Y.

K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,” Angew. Chem. Int. Ed. Engl. 50(46), 10839–10842 (2011).
[Crossref] [PubMed]

Pickwell-Macpherson, E.

E. P. J. Parrott, Y. Sun, and E. Pickwell-Macpherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1), 66–76 (2011).
[Crossref]

Quan, B.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
[Crossref]

Rahm, M.

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: A brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
[Crossref] [PubMed]

Rana, F.

C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, “Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2 : Experiments and theory,” Phys. Rev. B 89(20), 205436 (2014).
[Crossref]

H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
[Crossref]

Reinhard, B.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
[Crossref] [PubMed]

Ren, C. X.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

Ren, Y.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

Ritchie, D. A.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Sanderson, M.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Scardaci, V.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Shah, Y. D.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Shang, J.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Shao, X.

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

Shao, Z.

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

Shen, J.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Shen, N.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Shen, N. H.

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shi, W.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

F. Lin, W. Shi, X. He, and X. Zhong, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331 (2016).
[Crossref]

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

Sibik, J.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Singh, R.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Smith, R. J.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Sol, C. W. O.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

Solís-Fernández, P.

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

Soukoulis, C. M.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Su, H.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Sun, Y.

E. P. J. Parrott, Y. Sun, and E. Pickwell-Macpherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1), 66–76 (2011).
[Crossref]

Sun, Z.

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Tascón, J. M. D.

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tian, W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Tian, Z.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Tiwari, S.

H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
[Crossref]

Villar-Rodil, S.

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

Wang, H.

H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
[Crossref]

C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, “Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2 : Experiments and theory,” Phys. Rev. B 89(20), 205436 (2014).
[Crossref]

Wang, H. X.

K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,” Angew. Chem. Int. Ed. Engl. 50(46), 10839–10842 (2011).
[Crossref] [PubMed]

Wang, L.

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
[Crossref]

Wang, X.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Wang, Y.

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

Wang, Z.

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

Wei, Z.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Weis, P.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
[Crossref] [PubMed]

Wen, Q. Y.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Wu, X.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
[Crossref]

Xiao, L.

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

Xu, X.

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
[Crossref]

Yang, L.

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

Yang, Q. H.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Yang, Y.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Ye, Z.

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Yu, T.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Zang, M.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Zeitler, J. A.

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Zeng, J.

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

Zhang, B.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Zhang, C.

C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, “Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2 : Experiments and theory,” Phys. Rev. B 89(20), 205436 (2014).
[Crossref]

H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
[Crossref]

Zhang, F.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Zhang, H. L.

K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,” Angew. Chem. Int. Ed. Engl. 50(46), 10839–10842 (2011).
[Crossref] [PubMed]

Zhang, H. W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Zhang, K.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Zhang, L.

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

Zhang, P.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, Q.

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

Zhang, W.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Zhang, X.

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Zhao, M.

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

Zhao, Q.

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, F. Fan, M. Chen, S. Chen, and S.-J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Zhong, L.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Zhong, X.

Zhou, K. G.

K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,” Angew. Chem. Int. Ed. Engl. 50(46), 10839–10842 (2011).
[Crossref] [PubMed]

Zhu, J. X.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Zou, X.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACS Nano (3)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2.,” ACS Nano 8(8), 8174–8181 (2014).
[Crossref] [PubMed]

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6(10), 9118–9124 (2012).
[Crossref] [PubMed]

ACS Photonics (2)

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Adv. Funct. Mater. (1)

L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S. Lee, “MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors,” Adv. Funct. Mater. 25(19), 2910–2919 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y. Fan, N. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically tunable Goos–Hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

AIP Adv. (1)

W. Zheng, F. Fan, M. Chen, S. Chen, and S.-J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues,” Angew. Chem. Int. Ed. Engl. 50(46), 10839–10842 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, X. Wang, J. Shen, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. X. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz,” Appl. Phys. Lett. 108(96), 171101 (2016).
[Crossref]

W. L. Chan, H. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

X. Wu, X. Pan, B. Quan, X. Xu, C. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102(15), 89 (2013).
[Crossref]

Carbon (2)

L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants,” Carbon 49(5), 1653–1662 (2011).
[Crossref]

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

J. Am. Chem. Soc. (1)

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc. 131(10), 3611–3620 (2009).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (1)

M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: A brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

J. Mol. Struct. (1)

E. P. J. Parrott, Y. Sun, and E. Pickwell-Macpherson, “Terahertz spectroscopy: Its future role in medical diagnoses,” J. Mol. Struct. 1006(1), 66–76 (2011).
[Crossref]

J. Phys. Chem. B (1)

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, “2D behaviors of excitons in cesium lead halide perovskite nanoplatelets,” J. Phys. Chem. Lett. 8(6), 1161–1168 (2017).
[Crossref] [PubMed]

Nanoscale (3)

I. Chatzakis, Z. Li, A. V. Benderskii, and S. B. Cronin, “Broadband terahertz modulation in electrostatically-doped artificial trilayer graphene,” Nanoscale 9(4), 1721–1726 (2017).
[Crossref] [PubMed]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2.,” Nat. Mater. 12(3), 207–211 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, “Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2 : Experiments and theory,” Phys. Rev. B 89(20), 205436 (2014).
[Crossref]

H. Wang, C. Zhang, W. Chan, C. Manolatou, S. Tiwari, and F. Rana, “Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2,” Phys. Rev. B 93(4), 045407 (2014).
[Crossref]

Phys. Rev. Lett. (1)

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Proc. SPIE (3)

R. Beigang, S. G. Biedron, S. Dyjak, F. Ellrich, M. W. Haakestad, D. Hubsch, T. Kartaloglu, E. Ozbay, F. Ospald, N. Palka, and et al., “Comparison of terahertz technologies for detection and identification of explosives,” Proc. SPIE 9102, 1–10 (2014).

D. S. Jessop, C. W. O. Sol, L. Xiao, S. J. Kindness, P. Braeuninger-Weimer, H. Lin, J. P. Griffiths, Y. Ren, V. S. Kamboj, S. Hofmann, J. A. Zeitler, H. E. Beere, D. A. Ritchie, and R. Degl’Innocenti, “Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene,” Proc. SPIE 9747, 1–14 (2016).

L. Hou, X. Shao, L. Yang, Z. Wang, L. Zhang, M. Zhao, and W. Shi, “Study of carrier lifetime of silicon by OPTP method,” Proc. SPIE 9795, 97950Q (2015).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Rep. Prog. Phys. (1)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2.,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Other (1)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John wiley & sons, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The AFM image of liquid-exfoliated WS2 nanosheets. (b) The image of the prepared WS2-Si sample. (c) Thickness distribution map of WS2 film measured by white light interferometer. (d) Raman spectra of the WS2-Si sample. (e) The height curve obtained from the data of red line in Fig. 1(c).
Fig. 2
Fig. 2 (a) The normalized THz waveforms through WS2-Si (pink), Si (purple) and nitrogen (blue). (b) The THz waveforms through WS2-Si under pumping powers from 0 mW to 470 mW and (c) the frequency spectra obtained from Fig. 2(b) through FFT method.
Fig. 3
Fig. 3 The frequency resolved (a) transmittance and (b) modulation depth spectra of WS2-Si sample under different pumping powers. The modulation depth spectra of (c) Gr-Si, (d) Si and (e) WS2-Sapphire under the pumping power from 20 mW to 470 mW. (f) The modulation depths of Si (pink), WS2-Si (purple), WS2-Sapphire(blue) and Gr-Si (cyan) versus pumping power at 0.5 THz.
Fig. 4
Fig. 4 (a) The modulation depth spectra of Si (pink), Gr-Si (olive) and WS2-Si (blue) under 450 nm CW light. The pump power is 410 mW. The modulation depths of three samples are declined with the increase of frequency, which accord with the conductivity in Drude model. (b) The modulation depths (at 0.5 THz) of Si (pink), Gr-Si (olive) and WS2-Si (blue) as functions of pump power, respectively. The pump wavelength is adopted as 450 nm.
Fig. 5
Fig. 5 The comparison of modulation depths (at 0.4 THz) of WS2-Si versus (a) pump power and (b) normalized photon density: 800 nm (blue) and 450 nm (green). It is clear that when the same quantity of photon is illuminated in our WS2-Si sample the difference of modulation depth between 800 nm and 450 nm illumination is much reduced.
Fig. 6
Fig. 6 (a) A complete switching cycle under chopped CW light illumination. The fall time was estimated to be less than 1 ms. (b) Normalized modulation magnitude, showing a 3 dB bandwidth of ~3 KHz. From the fitting result, the time constant of device is calculated as 0.094 ms.
Fig. 7
Fig. 7 (a) The frequency averaged modulation depth of sample 1 (black square), sample 2 (red square) and sample 3 (blue square) under pumping power from 20mW to 200 mW. (b) The peak amplitude of THz wave through THz modulator with different polarization angles with the interval of 30 degree. The blue line and red line are indicated for the case of 0 mW and 100 mW, respectively.
Fig. 8
Fig. 8 (a) The real part of sheet conductivity of WS2-Si under different powers of 800 nm pumping power: 0 mW (black), 200 mW (orange) and 400 mW (red) pumping powers. (b) The sheet photoconductivity of WS2-Si under a 400 mW pumping power.
Fig. 9
Fig. 9 The experimental data (dots) and simulation results (solid lines) of modulation depth of WS2-Si under 20 mW (blue) and 200 mW (red) pumping condition and the corresponding carrier density are 1.4 × 1017 cm−3 and 1.6 × 1018 cm−3, respectively.
Fig. 10
Fig. 10 Illustration of photocarriers movement near the WS2-Si interface. Photogenerated electrons and holes near the interface are divided into different region through drift and diffusion movement.

Tables (1)

Tables Icon

Table 1 Some reported modulation depth of optically controlled THz modulator based on 2D material system.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ D r u d e = ε 0 γ ω p 2 / ( ω 2 + γ 2 )
T = | 1 + n ˜ s u b 1 + n ˜ s u b + Z σ ˜ ( ω ) d exp [ i ω Δ L ( n ˜ s u b 1 ) / c ] |
τ = 1 r [ ( n 0 + p 0 ) + 2 Δ n ]

Metrics