Abstract

We report a silicon photonic dual-gas sensor based on a wavelength-multiplexed microring resonator array for simultaneous detection of H2 and CO2 gases. The sensor uses Pd as the sensing layer for H2 gas and a novel functional material based on the Polyhexamethylene Biguanide (PHMB) polymer for CO2 gas sensing. Gas sensing experiments showed that the PHMB-functionalized microring exhibited high sensitivity to CO2 gas and excellent selectivity against H2. However, the Pd-functionalized microring was found to exhibit sensitivity to both H2 and CO2 gases, rendering it ineffective for detecting H2 in a gas mixture containing CO2. We show that the dual-gas sensing scheme can allow for accurate measurement of H2 concentration in the presence of CO2 by accounting for the cross-sensitivity of Pd to the latter.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon microring refractometric sensor for atmospheric CO2 gas monitoring

Guangcan Mi, Cameron Horvath, Mirwais Aktary, and Vien Van
Opt. Express 24(2) 1773-1780 (2016)

Guanidine derivative polymer coated microbubble resonator for high sensitivity detection of CO2 gas concentration

Hanyang Li, Bo Sun, Yonggui Yuan, and Jun Yang
Opt. Express 27(3) 1991-2000 (2019)

Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator

Nebiyu A. Yebo, Sreeprasanth Pulinthanathu Sree, Elisabeth Levrau, Christophe Detavernier, Zeger Hens, Johan A. Martens, and Roel Baets
Opt. Express 20(11) 11855-11862 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
    [Crossref] [PubMed]
  2. J. I. Hong and B. Y. Chang, “Development of the smartphone-based colorimetry for multi-analyte sensing arrays,” Lab Chip 14(10), 1725–1732 (2014).
    [Crossref] [PubMed]
  3. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
    [Crossref] [PubMed]
  4. K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
    [Crossref] [PubMed]
  5. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  7. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
    [Crossref] [PubMed]
  8. C. Chung-Yen and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
    [Crossref]
  9. D. X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
    [Crossref] [PubMed]
  10. Z. Xia, A. A. Eftekhar, Q. Li, and A. Adibi, “On-chip multiplexed photonic gas sensing for the detection of volatile organic compounds,” in Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 548–549.
    [Crossref]
  11. G. Mi, C. Horvath, M. Aktary, and V. Van, “Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring,” Opt. Express 24(2), 1773–1780 (2016).
    [Crossref] [PubMed]
  12. R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
    [Crossref]
  13. C. Edwards, S. J. McKeown, J. Zhou, G. Popescu, and L. L. Goddard, “In situ measurements of the axial expansion of palladium microdisks during hydrogen exposure using diffraction phase microscopy,” Opt. Mater. Express 4(12), 2559 (2014).
    [Crossref]
  14. N. Carriere, M. Z. Alam, M. Mojahedi, and J. S. Aitchison, “An integrated optical hydrogen sensor on a silicon-on-insulator platform: Effects of palladium film thickness,” Sens. Actuators B Chem. 216, 6–10 (2015).
    [Crossref]
  15. M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
    [Crossref]
  16. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  17. L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(7), 6856–6867 (2011).
    [Crossref] [PubMed]
  18. A. Bideau-Mehu, A. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
    [Crossref]
  19. E. R. Peck and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56(8), 1059 (1966).
    [Crossref]
  20. T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
    [Crossref]
  21. P. V. McKinney, “The adsorption of gases on palladium oxide,” J. Am. Chem. Soc. 55(9), 3626–3632 (1933).
    [Crossref]
  22. E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
    [Crossref]

2016 (2)

G. Mi, C. Horvath, M. Aktary, and V. Van, “Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring,” Opt. Express 24(2), 1773–1780 (2016).
[Crossref] [PubMed]

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

2015 (2)

N. Carriere, M. Z. Alam, M. Mojahedi, and J. S. Aitchison, “An integrated optical hydrogen sensor on a silicon-on-insulator platform: Effects of palladium film thickness,” Sens. Actuators B Chem. 216, 6–10 (2015).
[Crossref]

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

2014 (2)

2011 (1)

L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(7), 6856–6867 (2011).
[Crossref] [PubMed]

2010 (4)

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

D. X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
[Crossref] [PubMed]

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

2009 (1)

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

2006 (1)

1998 (1)

1973 (1)

A. Bideau-Mehu, A. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

1966 (1)

1933 (1)

P. V. McKinney, “The adsorption of gases on palladium oxide,” J. Am. Chem. Soc. 55(9), 3626–3632 (1933).
[Crossref]

Abjean, R.

A. Bideau-Mehu, A. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Adibi, A.

Z. Xia, A. A. Eftekhar, Q. Li, and A. Adibi, “On-chip multiplexed photonic gas sensing for the detection of volatile organic compounds,” in Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 548–549.
[Crossref]

Aitchison, J. S.

N. Carriere, M. Z. Alam, M. Mojahedi, and J. S. Aitchison, “An integrated optical hydrogen sensor on a silicon-on-insulator platform: Effects of palladium film thickness,” Sens. Actuators B Chem. 216, 6–10 (2015).
[Crossref]

Aktary, M.

Alam, M. Z.

N. Carriere, M. Z. Alam, M. Mojahedi, and J. S. Aitchison, “An integrated optical hydrogen sensor on a silicon-on-insulator platform: Effects of palladium film thickness,” Sens. Actuators B Chem. 216, 6–10 (2015).
[Crossref]

Allsop, T.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

Arif, R.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Bañuls Polo, M. J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Barrios, C. A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Bartolozzi, I.

Barton, J. S.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

Bennion, I.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

Bideau-Mehu, A.

A. Bideau-Mehu, A. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Bienstman, P.

Carlborg, C. F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Carriere, N.

N. Carriere, M. Z. Alam, M. Mojahedi, and J. S. Aitchison, “An integrated optical hydrogen sensor on a silicon-on-insulator platform: Effects of palladium film thickness,” Sens. Actuators B Chem. 216, 6–10 (2015).
[Crossref]

Chang, B. Y.

J. I. Hong and B. Y. Chang, “Development of the smartphone-based colorimetry for multi-analyte sensing arrays,” Lab Chip 14(10), 1725–1732 (2014).
[Crossref] [PubMed]

Cheben, P.

Chen, J.

L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(7), 6856–6867 (2011).
[Crossref] [PubMed]

Chen, S. J.

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[Crossref] [PubMed]

Chung-Yen, C.

Culverhouse, P.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

De Vos, K.

Defranco, J. A.

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

Delâge, A.

Densmore, A.

Djurišic, A. B.

Dortu, F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Edwards, C.

Eftekhar, A. A.

Z. Xia, A. A. Eftekhar, Q. Li, and A. Adibi, “On-chip multiplexed photonic gas sensing for the detection of volatile organic compounds,” in Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 548–549.
[Crossref]

Elazar, J. M.

Eryürek, M.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gobert, T. J.

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

Goddard, L. L.

Guern, A.

A. Bideau-Mehu, A. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Guo, L. J.

Gylfason, K. B.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hong, J. I.

J. I. Hong and B. Y. Chang, “Development of the smartphone-based colorimetry for multi-analyte sensing arrays,” Lab Chip 14(10), 1725–1732 (2014).
[Crossref] [PubMed]

Horvath, C.

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Janz, S.

Joe, J. H.

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

Johannin-Gilles, A.

A. Bideau-Mehu, A. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Jones, B. J. S.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

Jones, J. D. C.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

Jung, B.

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

Kalli, K.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Karadag, Y.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Kazmierczak, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Khanna, B. N.

Kilinç, N.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Kiraz, A.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Kresbach, G. M.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Kundrát, V.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Lapointe, J.

Lee, E.

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

Lee, G. B.

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[Crossref] [PubMed]

Lee, J. M.

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

Lee, K. H.

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[Crossref] [PubMed]

Lee, W.

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

Li, Q.

Z. Xia, A. A. Eftekhar, Q. Li, and A. Adibi, “On-chip multiplexed photonic gas sensing for the detection of volatile organic compounds,” in Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 548–549.
[Crossref]

Li, X.

L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(7), 6856–6867 (2011).
[Crossref] [PubMed]

Li, Y.

Liu, Q. Y.

Lopinski, G.

Ma, R.

Macaya, D. J.

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

Maier, R. R. J.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

Majewski, M. L.

Malliaras, G. G.

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

Maquieira Catala, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

McCulloch, S.

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

McKeown, S. J.

McKinney, P. V.

P. V. McKinney, “The adsorption of gases on palladium oxide,” J. Am. Chem. Soc. 55(9), 3626–3632 (1933).
[Crossref]

McKinnon, R.

Mi, G.

Mischki, T.

Moh, T.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Mojahedi, M.

N. Carriere, M. Z. Alam, M. Mojahedi, and J. S. Aitchison, “An integrated optical hydrogen sensor on a silicon-on-insulator platform: Effects of palladium film thickness,” Sens. Actuators B Chem. 216, 6–10 (2015).
[Crossref]

Neal, R.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Noh, J.

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

Owens, R. M.

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

Peck, E. R.

Popescu, G.

Popplewell, J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Post, E.

Rakic, A. D.

Ronan, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Rozhin, A.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Schacht, E.

Schmid, J. H.

Sohlström, H.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Stemme, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Su, Y. D.

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[Crossref] [PubMed]

Sun, X.

L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(7), 6856–6867 (2011).
[Crossref] [PubMed]

Sylvester, Y. A.

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

Tasaltin, N.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Tseng, F. G.

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[Crossref] [PubMed]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Vachon, M.

Van, V.

van der Wijngaart, W.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Vivien, L.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Waldron, P.

Webb, D. J.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Xia, Z.

Z. Xia, A. A. Eftekhar, Q. Li, and A. Adibi, “On-chip multiplexed photonic gas sensing for the detection of volatile organic compounds,” in Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 548–549.
[Crossref]

Xu, D. X.

Yang, S. Y.

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

Zhang, D.

Zhou, J.

Zhou, L.

L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(7), 6856–6867 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

P. V. McKinney, “The adsorption of gases on palladium oxide,” J. Am. Chem. Soc. 55(9), 3626–3632 (1933).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

R. R. J. Maier, B. J. S. Jones, J. S. Barton, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt. 9(6), S45–S59 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Lab Chip (3)

S. Y. Yang, J. A. Defranco, Y. A. Sylvester, T. J. Gobert, D. J. Macaya, R. M. Owens, and G. G. Malliaras, “Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors,” Lab Chip 9(5), 704–708 (2009).
[Crossref] [PubMed]

J. I. Hong and B. Y. Chang, “Development of the smartphone-based colorimetry for multi-analyte sensing arrays,” Lab Chip 14(10), 1725–1732 (2014).
[Crossref] [PubMed]

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Light Sci. Appl. (1)

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref]

Opt. Commun. (1)

A. Bideau-Mehu, A. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Sens. Actuators B Chem. (2)

N. Carriere, M. Z. Alam, M. Mojahedi, and J. S. Aitchison, “An integrated optical hydrogen sensor on a silicon-on-insulator platform: Effects of palladium film thickness,” Sens. Actuators B Chem. 216, 6–10 (2015).
[Crossref]

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Sensors (Basel) (1)

L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(7), 6856–6867 (2011).
[Crossref] [PubMed]

Thin Solid Films (1)

E. Lee, J. M. Lee, E. Lee, J. Noh, J. H. Joe, B. Jung, and W. Lee, “Hydrogen gas sensing performance of Pd–Ni alloy thin films,” Thin Solid Films 519(2), 880–884 (2010).
[Crossref]

Other (1)

Z. Xia, A. A. Eftekhar, Q. Li, and A. Adibi, “On-chip multiplexed photonic gas sensing for the detection of volatile organic compounds,” in Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 548–549.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the dual-gas sensor consisting of an array of three microring resonators: Ref-MR for reference, Pd-MR for H2 sensing and PHMB-MR for CO2 sensing. Cross-sectional diagrams showing (b) the Pd functional layer and (c) the PHMB coating. (d) SEM image of the Pd-MR.
Fig. 2
Fig. 2 Schematic of the setup used to perform sensing experiments to measure the responses of the dual-gas sensor to CO2 and H2 gases.
Fig. 3
Fig. 3 (a) Spectral response of the dual-gas sensor measured under N2 gas flow. (b) Resonant wavelength shifts of the Ref-MR at different H2 and CO2 gas concentrations.
Fig. 4
Fig. 4 Responses of the PHMB-MR to CO2 and H2 gases: (a) plot of the resonant wavelength shift vs. CO2 gas concentration. The straight line is the linear curve fit of the data (slope S = −4.83 × 10−4 pm/ppm, y-intercept B = −0.17 pm). (b) Plot of resonant wavelength shift vs. H2 gas concentration.
Fig. 5
Fig. 5 Responses of the Pd-MR to H2 and CO2 gases: (a) plot of resonant wavelength shift vs. H2 gas concentration (straight line is the linear curve fit with slope S = −9.15 × 10−4 pm/ppm, y-intercept B = 0.71 pm); (b) plot of resonant wavelength shift vs. CO2 gas concentration (straight line is the linear curve fit with slope S = 1.44 × 10−3 pm/ppm, y-intercept B = −0.58 pm).
Fig. 6
Fig. 6 Measured resonance spectra of (a) the Pd-MR and (b) the PHMB-MR on the dual-gas sensor. Black curves are the initial spectra in N2 gas; red curves are the spectra in the presence of a mixture of 2% H2 and 0.5% CO2 gases in N2. (c) Time response of the power transmission of the Pd-MR and PHMB-MR to an 8-min flow of the gas mixture. The operating wavelengths of the two microrings are indicated by points A and B in (a) and (b). Blue trace is the response of the Pd-MR; red trace is the response of the PHMB-MR. The gas mixture flow is indicated by the black dashed line.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = τ 2 + a 2 2 τ a cos ( ϕ ) 1 + τ 2 a 2 2 τ a cos ( ϕ )
C H 2 = [ Δ λ S CO 2 C CO 2 ( B H 2 + B CO 2 ) ] / S H 2

Metrics