Abstract

In this paper we propose a novel hybrid optical plasmonic Vivaldi antenna for operation in the standard C telecommunication band for wavelengths in the 1550 nm range. The antenna is fed by a silicon waveguide and is designed to have high gain and large bandwidth. The shape of the radiation pattern, with a main lobe along the antenna axis, makes this antenna suitable for point-to-point connections for inter- or intra-chip optical communications. Direct port-to-port short links for different connection distances and in a homogeneous environment have also been simulated to verify, by comparing the results of a full-wave simulation with the Friis transmission equation, the correctness of the antenna parameters obtained via near-to-far field transformation.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” Computer 35(1), 70–78 (2002).
    [Crossref]
  2. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
    [Crossref]
  3. A. Shacham, K. Bergman, and L.P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [Crossref]
  4. D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  5. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
    [Crossref] [PubMed]
  6. F. Gambini, S. Faralli, P. Pintus, N. Andriolli, and I. Cerutti, “BER evaluation of a low-crosstalk silicon integrated multi-microring network-on-chip,” Opt. Express 23(13), 17169–17178, (2015).
    [Crossref] [PubMed]
  7. E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embedded Comput. Syst. 16(1), 16 (2016).
    [Crossref]
  8. M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Transactions Very Large Scale Integr. (VLSI) Syst. (posted 28 March 2017, in press).
  9. J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
    [Crossref]
  10. A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
    [Crossref]
  11. S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo, “Wireless NoC as interconnection backbone for multicore chips: promises and challenges,” IEEE J. Emerg. Sel. Topic Circuits Syst. 2(2), 228–239 (2012).
    [Crossref]
  12. D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
    [Crossref]
  13. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
    [Crossref] [PubMed]
  14. Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
    [Crossref] [PubMed]
  15. J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
    [Crossref] [PubMed]
  16. D. M. Solís, J. M. Taboada, F. Obelleiro, and L. Landesa, “Optimization of an optical wireless nanolink using directive nanoantennas,” Opt. Express 21(2), 2369–2377 (2013).
    [Crossref] [PubMed]
  17. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [Crossref]
  18. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  19. E. M. Atie, Z. Xie, A. L. Eter, R. Salut, and D. Nedeljkovic, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy,” Appl. Phys. Lett. 106, 151104 (2015).
    [Crossref]
  20. D. Bar-Lev and J. Scheuer, “Efficient second harmonic generation using nonlinear substrates patterned by nanoantenna arrays,” Opt. Express 21(24), 29165–29178 (2013).
    [Crossref]
  21. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
    [Crossref]
  22. R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
    [Crossref]
  23. R. Won, “Surface plasmons: optical antennas for sensing,” Nat. Photonics 1, 442 (2007).
    [Crossref]
  24. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2013).
    [Crossref]
  25. D. Ramaccia, F. Bilotti, A. Toscano, and A. Massaro, “Efficient and wideband horn nanoantenna,” Opt. Lett. 36(10), 1743–1745 (2011).
    [Crossref] [PubMed]
  26. L. Yousefi and A. C. Foster, “Waveguide-fed optical hybrid plasmonic patch nano-antenna,” Opt. Express 20(16), 18326–18335 (2012).
    [Crossref] [PubMed]
  27. Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
    [Crossref] [PubMed]
  28. M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photon. Technol. Lett. 27(10), 1092–1095 (2015).
    [Crossref]
  29. K. J. A. Ooi, P. Bai, M. X. Gu, and L. K. Ang, “Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides,” Opt. Express 19(18), 17075–17085 (2011).
    [Crossref] [PubMed]
  30. Z. Pan and J. Guo, “Enhanced optical absorption and electric field resonance in diablo metal bar optical antennas,” Opt. Express 21(26), 32491–32500 (2013).
    [Crossref]
  31. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [Crossref] [PubMed]
  32. T. H. Timiniau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–10866 (2008).
    [Crossref]
  33. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  34. P. J. Gibson, “The Vivaldi aerial,” Proceedings of the 9th European Microwave Conference (EuMC), (IEEE1979), pp. 101–105.
  35. J. Shin and D. H. Schaubert, “A parameter study of stripline-fed Vivaldi notch-antenna arrays,” IEEE Trans. Antennas Propag. 47(5), 879–886 (1999).
    [Crossref]
  36. Z. Iluz and A. Boag, “Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band,” Opt. Lett. 36(15), 2273–2775 (2011).
    [Crossref]
  37. I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
    [Crossref]
  38. COMSOL Multiphysics, http://www.comsol.com/
  39. Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/
  40. M. C. Greenberg, L. Virga, and C. L. Hammond, “Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application,” IEEE Trans. Veh. Technol. 52(2), 305–310 (2003).
    [Crossref]
  41. J.D. Kraus, Antennas, 2nd Ed. (McGraw-Hill, 1988).
  42. B. Ciftcioglu, R. Berman, S. Wang, J. Hu, I. Savidis, M. Jain, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express 20(4), 4331–4345 (2012).
    [Crossref] [PubMed]
  43. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 2005).

2016 (3)

E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embedded Comput. Syst. 16(1), 16 (2016).
[Crossref]

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

2015 (3)

E. M. Atie, Z. Xie, A. L. Eter, R. Salut, and D. Nedeljkovic, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy,” Appl. Phys. Lett. 106, 151104 (2015).
[Crossref]

F. Gambini, S. Faralli, P. Pintus, N. Andriolli, and I. Cerutti, “BER evaluation of a low-crosstalk silicon integrated multi-microring network-on-chip,” Opt. Express 23(13), 17169–17178, (2015).
[Crossref] [PubMed]

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photon. Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

2014 (2)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (6)

S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo, “Wireless NoC as interconnection backbone for multicore chips: promises and challenges,” IEEE J. Emerg. Sel. Topic Circuits Syst. 2(2), 228–239 (2012).
[Crossref]

D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
[Crossref]

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

L. Yousefi and A. C. Foster, “Waveguide-fed optical hybrid plasmonic patch nano-antenna,” Opt. Express 20(16), 18326–18335 (2012).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

B. Ciftcioglu, R. Berman, S. Wang, J. Hu, I. Savidis, M. Jain, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express 20(4), 4331–4345 (2012).
[Crossref] [PubMed]

2011 (5)

D. Ramaccia, F. Bilotti, A. Toscano, and A. Massaro, “Efficient and wideband horn nanoantenna,” Opt. Lett. 36(10), 1743–1745 (2011).
[Crossref] [PubMed]

A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
[Crossref]

K. J. A. Ooi, P. Bai, M. X. Gu, and L. K. Ang, “Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides,” Opt. Express 19(18), 17075–17085 (2011).
[Crossref] [PubMed]

Z. Iluz and A. Boag, “Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band,” Opt. Lett. 36(15), 2273–2775 (2011).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

2010 (1)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

2009 (2)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (4)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

A. Shacham, K. Bergman, and L.P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
[Crossref] [PubMed]

T. H. Timiniau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–10866 (2008).
[Crossref]

2007 (2)

R. Won, “Surface plasmons: optical antennas for sensing,” Nat. Photonics 1, 442 (2007).
[Crossref]

J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
[Crossref]

2005 (1)

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
[Crossref]

2003 (1)

M. C. Greenberg, L. Virga, and C. L. Hammond, “Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application,” IEEE Trans. Veh. Technol. 52(2), 305–310 (2003).
[Crossref]

2002 (1)

L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” Computer 35(1), 70–78 (2002).
[Crossref]

1999 (1)

J. Shin and D. H. Schaubert, “A parameter study of stripline-fed Vivaldi notch-antenna arrays,” IEEE Trans. Antennas Propag. 47(5), 879–886 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Andriolli, N.

Ang, L. K.

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Atie, E. M.

E. M. Atie, Z. Xie, A. L. Eter, R. Salut, and D. Nedeljkovic, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy,” Appl. Phys. Lett. 106, 151104 (2015).
[Crossref]

Bai, P.

Bar-Lev, D.

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Belzer, B.

S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo, “Wireless NoC as interconnection backbone for multicore chips: promises and challenges,” IEEE J. Emerg. Sel. Topic Circuits Syst. 2(2), 228–239 (2012).
[Crossref]

A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
[Crossref]

Benini, L.

L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” Computer 35(1), 70–78 (2002).
[Crossref]

Bergman, K.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

A. Shacham, K. Bergman, and L.P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Berman, R.

Bertozzi, D.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Transactions Very Large Scale Integr. (VLSI) Syst. (posted 28 March 2017, in press).

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Biberman, A.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Bilotti, F.

Boag, A.

Z. Iluz and A. Boag, “Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band,” Opt. Lett. 36(15), 2273–2775 (2011).
[Crossref]

Brewer, J. E.

J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
[Crossref]

Burns, M.J.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Calm, Y.M.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Capasso, F.

Carloni, L.P.

A. Shacham, K. Bergman, and L.P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Cerutti, I.

Chang, K.

A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
[Crossref]

Chowdhury, A. M.

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photon. Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ciftcioglu, B.

Cilardo, A.

E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embedded Comput. Syst. 16(1), 16 (2016).
[Crossref]

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Cubukcu, E.

D’Imperio, L.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Deb, S.

S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo, “Wireless NoC as interconnection backbone for multicore chips: promises and challenges,” IEEE J. Emerg. Sel. Topic Circuits Syst. 2(2), 228–239 (2012).
[Crossref]

A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
[Crossref]

Decker, M.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Di Tomaso, D.

D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Eter, A. L.

E. M. Atie, Z. Xie, A. L. Eter, R. Salut, and D. Nedeljkovic, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy,” Appl. Phys. Lett. 106, 151104 (2015).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Faralli, S.

Foster, A. C.

Friedman, E. G.

Fu, L.

Fusella, E.

E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embedded Comput. Syst. 16(1), 16 (2016).
[Crossref]

Gambini, F.

Ganguly, A.

S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo, “Wireless NoC as interconnection backbone for multicore chips: promises and challenges,” IEEE J. Emerg. Sel. Topic Circuits Syst. 2(2), 228–239 (2012).
[Crossref]

A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
[Crossref]

Gao, L.

J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
[Crossref]

Gibson, P. J.

P. J. Gibson, “The Vivaldi aerial,” Proceedings of the 9th European Microwave Conference (EuMC), (IEEE1979), pp. 101–105.

Giessen, H.

Gong, H.

Greenberg, M. C.

M. C. Greenberg, L. Virga, and C. L. Hammond, “Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application,” IEEE Trans. Veh. Technol. 52(2), 305–310 (2003).
[Crossref]

Gu, M. X.

Guo, H.

Guo, J.

Guo, R.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
[Crossref]

Hammond, C. L.

M. C. Greenberg, L. Virga, and C. L. Hammond, “Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application,” IEEE Trans. Veh. Technol. 52(2), 305–310 (2003).
[Crossref]

Heo, D.

S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo, “Wireless NoC as interconnection backbone for multicore chips: promises and challenges,” IEEE J. Emerg. Sel. Topic Circuits Syst. 2(2), 228–239 (2012).
[Crossref]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Hu, J.

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Huang, M.

Iluz, Z.

Z. Iluz and A. Boag, “Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band,” Opt. Lett. 36(15), 2273–2775 (2011).
[Crossref]

Jain, M.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaya, S.

D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
[Crossref]

Kempa, K.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Khalil, I.

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photon. Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

Kivshar, Y. S.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
[Crossref]

Kodi, A.

D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
[Crossref]

Kraus, J.D.

J.D. Kraus, Antennas, 2nd Ed. (McGraw-Hill, 1988).

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Laha, S.

D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
[Crossref]

Landesa, L.

Li, Q.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
[Crossref] [PubMed]

Lin, J.

J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
[Crossref]

Liu, N.

Maksymov, I. S.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Massaro, A.

Matolak, D. W.

D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
[Crossref]

Merlo, J. M.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Meyrath, T. P.

Micheli, G. D.

L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” Computer 35(1), 70–78 (2002).
[Crossref]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Miller, D. B.

D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Miroshnichenko, A. E.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Moore, D.

Naughton, J.R.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Naughton, M.J.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Nedeljkovic, D.

E. M. Atie, Z. Xie, A. L. Eter, R. Salut, and D. Nedeljkovic, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy,” Appl. Phys. Lett. 106, 151104 (2015).
[Crossref]

Nesbitt, N.T.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Neshev, D. N.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
[Crossref]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

O, K. K.

J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
[Crossref]

Obelleiro, F.

Ooi, K. J. A.

Ortin-Obon, M.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Transactions Very Large Scale Integr. (VLSI) Syst. (posted 28 March 2017, in press).

Pan, Z.

Pande, P. P.

A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
[Crossref]

Pande, P.P.

S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo, “Wireless NoC as interconnection backbone for multicore chips: promises and challenges,” IEEE J. Emerg. Sel. Topic Circuits Syst. 2(2), 228–239 (2012).
[Crossref]

Pintus, P.

Qiu, M.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
[Crossref] [PubMed]

Rahman, A.

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photon. Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

Ramaccia, D.

Ramini, L.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Transactions Very Large Scale Integr. (VLSI) Syst. (posted 28 March 2017, in press).

Rayess, W.

D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
[Crossref]

Rose, A.H.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Saad-Bin-Alam, M.

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photon. Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

Salut, R.

E. M. Atie, Z. Xie, A. L. Eter, R. Salut, and D. Nedeljkovic, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy,” Appl. Phys. Lett. 106, 151104 (2015).
[Crossref]

Savidis, I.

Schaubert, D. H.

J. Shin and D. H. Schaubert, “A parameter study of stripline-fed Vivaldi notch-antenna arrays,” IEEE Trans. Antennas Propag. 47(5), 879–886 (1999).
[Crossref]

Scheuer, J.

Schweizer, H.

Setzpfandt, F.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
[Crossref]

Shacham, A.

A. Shacham, K. Bergman, and L.P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Shin, J.

J. Shin and D. H. Schaubert, “A parameter study of stripline-fed Vivaldi notch-antenna arrays,” IEEE Trans. Antennas Propag. 47(5), 879–886 (1999).
[Crossref]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Smythe, E. J.

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Solís, D. M.

Staude, I.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
[Crossref]

Stefani, F. D.

Su, Y.

J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
[Crossref]

Taboada, J. M.

Taflove, A.

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Tala, M.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Transactions Very Large Scale Integr. (VLSI) Syst. (posted 28 March 2017, in press).

Teuscher, C.

A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
[Crossref]

Timiniau, T. H.

Toscano, A.

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

van Hulst, N. F.

Vinals-Yufera, V.

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Transactions Very Large Scale Integr. (VLSI) Syst. (posted 28 March 2017, in press).

Virga, L.

M. C. Greenberg, L. Virga, and C. L. Hammond, “Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application,” IEEE Trans. Veh. Technol. 52(2), 305–310 (2003).
[Crossref]

Wang, S.

Wicks, G.

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Won, R.

R. Won, “Surface plasmons: optical antennas for sensing,” Nat. Photonics 1, 442 (2007).
[Crossref]

Wu, H.

B. Ciftcioglu, R. Berman, S. Wang, J. Hu, I. Savidis, M. Jain, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express 20(4), 4331–4345 (2012).
[Crossref] [PubMed]

J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
[Crossref]

Xie, Z.

E. M. Atie, Z. Xie, A. L. Eter, R. Salut, and D. Nedeljkovic, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy,” Appl. Phys. Lett. 106, 151104 (2015).
[Crossref]

Yang, C.

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39(11), 3204–3207 (2014).
[Crossref] [PubMed]

Yousefi, L.

Zentgraf, T.

Zhao, D.

ACM Trans. Embedded Comput. Syst. (1)

E. Fusella and A. Cilardo, “Crosstalk-aware automated mapping for optical networks-on-chip,” ACM Trans. Embedded Comput. Syst. 16(1), 16 (2016).
[Crossref]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Appl. Phys. Lett. (1)

E. M. Atie, Z. Xie, A. L. Eter, R. Salut, and D. Nedeljkovic, “Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy,” Appl. Phys. Lett. 106, 151104 (2015).
[Crossref]

Computer (1)

L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” Computer 35(1), 70–78 (2002).
[Crossref]

IEEE J. Emerg. Sel. Topic Circuits Syst. (1)

S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo, “Wireless NoC as interconnection backbone for multicore chips: promises and challenges,” IEEE J. Emerg. Sel. Topic Circuits Syst. 2(2), 228–239 (2012).
[Crossref]

IEEE J. Solid-State Circuits (1)

J. Lin, H. Wu, Y. Su, L. Gao, J. E. Brewer, and K. K. O, “Communication using antennas fabricated in silicon integrated circuits,” IEEE J. Solid-State Circuits 42(8), 1678–1687, (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Saad-Bin-Alam, I. Khalil, A. Rahman, and A. M. Chowdhury, “Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications,” IEEE Photon. Technol. Lett. 27(10), 1092–1095 (2015).
[Crossref]

IEEE Trans. Antennas Propag. (1)

J. Shin and D. H. Schaubert, “A parameter study of stripline-fed Vivaldi notch-antenna arrays,” IEEE Trans. Antennas Propag. 47(5), 879–886 (1999).
[Crossref]

IEEE Trans. Comput. (2)

A. Ganguly, K. Chang, S. Deb, P. P. Pande, B. Belzer, and C. Teuscher, “Scalable hybrid wireless network-on-chip architectures for multicore systems,” IEEE Trans. Comput. 60(10), 1485–1502 (2011).
[Crossref]

A. Shacham, K. Bergman, and L.P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

IEEE Trans. Veh. Technol. (1)

M. C. Greenberg, L. Virga, and C. L. Hammond, “Performance characteristics of the dual exponentially tapered slot antenna for wireless communication application,” IEEE Trans. Veh. Technol. 52(2), 305–310 (2003).
[Crossref]

Nano Lett. (1)

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15(5), 3324–3328 (2005).
[Crossref]

Nanophotonics (1)

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Nat. Photonics (3)

R. Won, “Surface plasmons: optical antennas for sensing,” Nat. Photonics 1, 442 (2007).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Opt. Express (10)

L. Yousefi and A. C. Foster, “Waveguide-fed optical hybrid plasmonic patch nano-antenna,” Opt. Express 20(16), 18326–18335 (2012).
[Crossref] [PubMed]

E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2013).
[Crossref]

K. J. A. Ooi, P. Bai, M. X. Gu, and L. K. Ang, “Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides,” Opt. Express 19(18), 17075–17085 (2011).
[Crossref] [PubMed]

Z. Pan and J. Guo, “Enhanced optical absorption and electric field resonance in diablo metal bar optical antennas,” Opt. Express 21(26), 32491–32500 (2013).
[Crossref]

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
[Crossref] [PubMed]

T. H. Timiniau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–10866 (2008).
[Crossref]

D. Bar-Lev and J. Scheuer, “Efficient second harmonic generation using nonlinear substrates patterned by nanoantenna arrays,” Opt. Express 21(24), 29165–29178 (2013).
[Crossref]

F. Gambini, S. Faralli, P. Pintus, N. Andriolli, and I. Cerutti, “BER evaluation of a low-crosstalk silicon integrated multi-microring network-on-chip,” Opt. Express 23(13), 17169–17178, (2015).
[Crossref] [PubMed]

D. M. Solís, J. M. Taboada, F. Obelleiro, and L. Landesa, “Optimization of an optical wireless nanolink using directive nanoantennas,” Opt. Express 21(2), 2369–2377 (2013).
[Crossref] [PubMed]

B. Ciftcioglu, R. Berman, S. Wang, J. Hu, I. Savidis, M. Jain, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express 20(4), 4331–4345 (2012).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Proc. IEEE (2)

D. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008).
[Crossref]

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

J. M. Merlo, N.T. Nesbitt, Y.M. Calm, A.H. Rose, L. D’Imperio, C. Yang, J.R. Naughton, M.J. Burns, K. Kempa, and M.J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Wireless Commun. (1)

D. W. Matolak, A. Kodi, S. Kaya, D. Di Tomaso, S. Laha, and W. Rayess, “Wireless networks-on-chips: architecture, wireless channel and devices,” Wireless Commun. 19(5), 58–65 (2012).
[Crossref]

Other (6)

M. Ortin-Obon, M. Tala, L. Ramini, V. Vinals-Yufera, and D. Bertozzi, “Contrasting laser power requirements of wavelength-routed optical NoC topologies subject to the floorplanning, placement and routing constraints of a 3D-stacked system,” IEEE Transactions Very Large Scale Integr. (VLSI) Syst. (posted 28 March 2017, in press).

P. J. Gibson, “The Vivaldi aerial,” Proceedings of the 9th European Microwave Conference (EuMC), (IEEE1979), pp. 101–105.

COMSOL Multiphysics, http://www.comsol.com/

Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 2005).

J.D. Kraus, Antennas, 2nd Ed. (McGraw-Hill, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sketch of the optical antenna: 3D view (left); lateral view (right). The ochre geometry represents the silicon waveguide, whereas the light-blue one is the plasmonic structure. The silicon waveguide has dimensions w × h. The gap between the photonic wire and the plasmonic structure is g, while s is the width of the slot between the two arms of the plasmonic waveguide. The thickness of the metallic strip is t and the width of each arm is p. Lc is the length of the coupling section, whereas La is the length of the antenna.

Fig. 2
Fig. 2

On the left: Plot of the curves relating the effective refractive index neff of the fundamental TE mode of the isolated waveguides to the waveguide width (w or p), respectively for the photonic wire (black dashed curve) and for the plasmonic waveguide (colored solid curves). For the plasmonic waveguide, curves are plotted as a function of the slot width s from s = 20 nm (blue curve, the rightmost one in the plot) to s = 70 nm (yellow curve, the leftmost one in the plot). In these simulations, λ = 1.55 μm. On the right: Coupling distance Lc as a function of the effective refractive index neff for a coupler with a s = 30 nm slotted plasmonic waveguide. In these simulations, λ = 1.55 μm. The inset of the right figure shows the S parameters (red solid curve for |S21| and black dashed curve for |S11|) of the coupler in the 1.5 μm − 1.6 μm wavelength range.

Fig. 3
Fig. 3

Free-Space Path Loss A0 (in dB) of a wireless connection as a function of the distance (normalized with respect to the wavelength) between the transmitting and the receiving antennas for a link in air (blue solid curve) and on a homogeneous SiO2 (red dashed curve), respectively.

Fig. 4
Fig. 4

On the left: directivity of the Vivaldi antenna for La = 2.5 μm and R = 3.0 μm−1 as a function of the wavelength in the 1.5 μm − 1.6 μm wavelength range. The inset shows the reflection coefficient (|S11|2) at the input port in the same wavelength interval. On the right: radiation patterns of the Vivaldi Antenna on the horizontal (E) plane for λ = 1.5 μm (top plot), λ = 1.55 μm (central plot) and λ = 1.6 μm (bottom plot).

Fig. 5
Fig. 5

On the left: directivity (red dashed curve, right axis) and gain (blue solid curve, left axis) of the Vivaldi antenna as a function of La. In these computations, R = 3.0 μm−1 and λ = 1.55 μm. On the right: radiation patterns for λ = 1.50 μm (top plot), for λ = 1.55 μm (central plot) and for λ = 1.60 μm (bottom plot). The blue solid curves show the radiation patterns in the horizontal (E) plane, whereas the red dashed curves refer to the vertical (H) one. For these simulations, antenna parameters are La = 1.75 μm, R = 3.0 μm−1.

Fig. 6
Fig. 6

On the left: directivity (red dashed curve, right axis) and gain (blue solid curve, left axis) of the Vivaldi antenna as a function of R and for λ = 1.55 μm. In these computations, the length of the antenna is La = 1.75 μm, which is the optimized value obtained previously. On the right: gain of the optimized antenna (La = 1.75 μm and R = 3.5 μm−1) as a function of the wavelength. The inset shows the reflection coefficient |S11|2 in the 1.5 μm − 1.6 μm wavelength interval.

Fig. 7
Fig. 7

Sketch of the wireless optical link with definition of the input and output ports on the silicon waveguides respectively at the transmitter and the receiver. Pt is the input power on the Si waveguide exciting the TX antenna, whereas Pr is the output power collected by the waveguide at the RX section. d is the length of the optical wireless link.

Fig. 8
Fig. 8

Pattern of the electric field |E|2 (logarithmic scale) on the horizontal (top plot) and vertical (bottom plot) planes for an optical link between two antennas embedded on silica and positioned 50 μm apart. The wavelength is λ = 1.55 μm. Axes are not in scale, to ease visualization. The top axis in both plots shows the Z coordinate normalized with respect to the propagation wavelength.

Fig. 9
Fig. 9

On the left: plots of the received power (in dBm) at the output port of the link for different connection lengths d in the 1.5 μm − 1.6 μm wavelength interval. On the right: comparisons among the received powers obtained, for different connection lengths d, by simulating with FDTD the whole link and through the Friis equation with the values of the antenna gain obtained in the previous section. In these simulations, λ = 1.55 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L c = λ 2 ( n c 1 n c 2 )
P r = P t + G r + G t + 20 log 10 ( λ / n 4 π d ) ,

Metrics