Abstract

Ge-on-Si is an attractive material platform for mid-IR broadband sources on a chip because of its wide transparency window, high Kerr nonlinearity and CMOS compatibility. We present a low-loss Ge-on-Si waveguide with flat and low dispersion from 3 to 11 µm, which enables a coherent supercontinuum from 2 to 12 µm, generated using a sub-ps pulsed pump. We show that 700-fs pump pulses with a low peak power of 400 W are needed to generate such a wide supercontinuum, and the waveguide length is around 5.35 mm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared octave spanning supercontinuum generation to 8.5  μm in silicon-germanium waveguides

Milan Sinobad, Christelle Monat, Barry Luther-davies, Pan Ma, Stephen Madden, David J. Moss, Arnan Mitchell, David Allioux, Regis Orobtchouk, Salim Boutami, Jean-Michel Hartmann, Jean-Marc Fedeli, and Christian Grillet
Optica 5(4) 360-366 (2018)

Supercontinuum generation in strip/slot hybrid waveguide with flat and low dispersion

Yuchao Zhang, Hongjun Liu, Qibing Sun, Nan Huang, and Zhaolu Wang
Appl. Opt. 54(15) 4850-4856 (2015)

Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet
Opt. Express 23(25) 32202-32214 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac Trends in Anal Chem 18(2), 85–93 (1999).
    [Crossref]
  2. G. Socrates, Infrared and Raman characteristic group frequencies table and charts (John Wiley & Sons, 2001).
  3. R. Longshore, P. Raimondi, and M. Lumpkin, “Selection of detector peak wavelength for optimum infrared system performance,” Infrared Phys. 16(6), 639–647 (1976).
    [Crossref]
  4. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009).
    [Crossref] [PubMed]
  5. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  6. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [Crossref] [PubMed]
  7. F. D. Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Modelling of supercontinuum generation in the germanium-on-silicon waveguided platform,” J. Lightwave Technol. 33(21), 1 (2015).
    [Crossref]
  8. J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).
  9. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
    [Crossref]
  10. N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. L. Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire,” Optica 2(9), 797–802 (2015).
    [Crossref]
  11. L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2013).
  12. Y. C. Chang, V. Paeder, L. Hvozdara, J. M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37(14), 2883–2885 (2012).
    [Crossref] [PubMed]
  13. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  14. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18(19), 20529–20534 (2010).
    [Crossref] [PubMed]
  15. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
    [Crossref] [PubMed]
  16. A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
    [Crossref] [PubMed]
  17. Z. Cheng, X. Chen, Y. W. Chi, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
    [Crossref]
  18. Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, and L. Zhang, “Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths,” Opt. Lett. 41(21), 4939–4942 (2016).
    [Crossref] [PubMed]
  19. L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express 19(12), 11584–11590 (2011).
    [Crossref] [PubMed]
  20. M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
    [PubMed]

2017 (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

2013 (2)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2013).

2012 (3)

2011 (1)

2010 (2)

2009 (1)

1999 (1)

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac Trends in Anal Chem 18(2), 85–93 (1999).
[Crossref]

1976 (1)

R. Longshore, P. Raimondi, and M. Lumpkin, “Selection of detector peak wavelength for optimum infrared system performance,” Infrared Phys. 16(6), 639–647 (1976).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Agarwal, A. M.

Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, and L. Zhang, “Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths,” Opt. Lett. 41(21), 4939–4942 (2016).
[Crossref] [PubMed]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2013).

Alem, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

Amin Shoaie, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

Atanackovic, P.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Beausoleil, R. G.

Bedoya, A. C.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Brès, C. S.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

Chang, Y. C.

Chen, X.

Z. Cheng, X. Chen, Y. W. Chi, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Cheng, Z.

Z. Cheng, X. Chen, Y. W. Chi, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Chi, Y. W.

Z. Cheng, X. Chen, Y. W. Chi, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Choi, D. Y.

Dai, S.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Davies, B. L.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Duval, S. G.

Dwivedi, S.

Eggleton, B. J.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

Grillet, C.

Guo, W.

Guo, Y.

Hartmann, J. M.

Herzig, H. P.

Hudson, D. D.

Hvozdara, L.

Jackson, S. D.

Jafari, Z.

Kang, Z.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Kimerling, L. C.

Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, and L. Zhang, “Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths,” Opt. Lett. 41(21), 4939–4942 (2016).
[Crossref] [PubMed]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2013).

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Labadie, L.

Leonardis, F. D.

F. D. Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Modelling of supercontinuum generation in the germanium-on-silicon waveguided platform,” J. Lightwave Technol. 33(21), 1 (2015).
[Crossref]

Lepage, G.

Li, F.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Li, G.

Lin, Q.

Lin, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Longshore, R.

R. Longshore, P. Raimondi, and M. Lumpkin, “Selection of detector peak wavelength for optimum infrared system performance,” Infrared Phys. 16(6), 639–647 (1976).
[Crossref]

Loo, R.

Lu, C.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Lumpkin, M.

R. Longshore, P. Raimondi, and M. Lumpkin, “Selection of detector peak wavelength for optimum infrared system performance,” Infrared Phys. 16(6), 639–647 (1976).
[Crossref]

Luther-Davies, B.

Madden, S.

Malik, A.

Michel, J.

Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, and L. Zhang, “Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths,” Opt. Lett. 41(21), 4939–4942 (2016).
[Crossref] [PubMed]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2013).

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moss, D. J.

Muneeb, M.

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Paeder, V.

Painter, O.

Palomba, S.

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Passaro, V. M. N.

F. D. Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Modelling of supercontinuum generation in the germanium-on-silicon waveguided platform,” J. Lightwave Technol. 33(21), 1 (2015).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Qi, S.

Raimondi, P.

R. Longshore, P. Raimondi, and M. Lumpkin, “Selection of detector peak wavelength for optimum infrared system performance,” Infrared Phys. 16(6), 639–647 (1976).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Read, A.

Roelkens, G.

Sang, X.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Schneider, T.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Shimura, Y.

Singh, N.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

F. D. Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Modelling of supercontinuum generation in the germanium-on-silicon waveguided platform,” J. Lightwave Technol. 33(21), 1 (2015).
[Crossref]

Soto, M. A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tam, H. Y.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tapp, H. S.

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac Trends in Anal Chem 18(2), 85–93 (1999).
[Crossref]

Thévenaz, L.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

Troia, B.

F. D. Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Modelling of supercontinuum generation in the germanium-on-silicon waveguided platform,” J. Lightwave Technol. 33(21), 1 (2015).
[Crossref]

Tsang, H. K.

Z. Cheng, X. Chen, Y. W. Chi, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Van Campenhout, J.

Van Landschoot, L.

Van Opstal, T.

Vanherle, W.

Vedadi, A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

Wai, P. K. A.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Wallner, O.

Wang, K.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Wang, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Willner, A. E.

Wilson, R. H.

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac Trends in Anal Chem 18(2), 85–93 (1999).
[Crossref]

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Wu, Q.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Xu, K.

Z. Cheng, X. Chen, Y. W. Chi, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Yan, B.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Yan, Y.

Yang, Z.

Yu, C.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Yu, Y.

Yuan, J.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Yue, Y.

Zhai, C.

Zhang, B.

Zhang, L.

Zhang, P.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zhang, X.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zhong, K.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhou, G.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Zhou, X.

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

IEEE Photonics J. (1)

Z. Cheng, X. Chen, Y. W. Chi, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics J. 4(5), 1510–1519 (2012).
[Crossref]

Infrared Phys. (1)

R. Longshore, P. Raimondi, and M. Lumpkin, “Selection of detector peak wavelength for optimum infrared system performance,” Infrared Phys. 16(6), 639–647 (1976).
[Crossref]

J. Lightwave Technol. (1)

F. D. Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Modelling of supercontinuum generation in the germanium-on-silicon waveguided platform,” J. Lightwave Technol. 33(21), 1 (2015).
[Crossref]

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Lin, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Nanophotonics (1)

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2013).

Nat. Commun. (1)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4(1), 2898 (2013).
[PubMed]

Nat. Photonics (2)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica (1)

Trac Trends in Anal Chem (1)

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac Trends in Anal Chem 18(2), 85–93 (1999).
[Crossref]

Other (2)

G. Socrates, Infrared and Raman characteristic group frequencies table and charts (John Wiley & Sons, 2001).

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Dispersion-flattened Ge-on-Si waveguide, with SiO2 substrate partially removed, for supercontinuum generation in the mid-IR.
Fig. 2
Fig. 2 (a) Flat and low dispersion is produced between 3.37 and 10.43 μm, a wavelength range around two octaves. The nonlinear coefficient γ decreases quickly with the wavelength. (b) The substrate leakage increases significantly with wavelength.
Fig. 3
Fig. 3 Dispersion profiles with structural parameters changed around the optimum values.
Fig. 4
Fig. 4 (a) Spectral evolution versus propagation distance. The spectrum of the pulse becomes significantly broadened, and the broadest and flattest spectrum are obtained with dispersive wave in the short wavelength at a propagation distance of about 5.35 mm. (b) Degree of coherence in SCG changes over distance, and good coherence is found at 5.35 mm.
Fig. 5
Fig. 5 Spectrogram evolution of the pulse. Strong self-steepening and spectral broadening occur in the pulse propagation from 0 to 5.35 mm. We can see an optical shock on the trailing edge of the pulse as a result of the self-steepening effect and low dispersion, which has a temporal feature of 22 fs, almost a single cycle time at 6.57 µm.
Fig. 6
Fig. 6 (a) The best spectra generated with different peak powers of the input pulses, which illustrate that the broadest spectra can be obtained at a shorter distance with an increasing pump power. (b) The best spectra generated with different widths of the input pulses, which show that using a long pulse one can still obtain similar spectral coverage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( z + α 2 + i m = 2 ( i ) m β m m ! m t m ) A = N ( A )
N ( A ) = n = 0 i γ n n ! ( i 2 ) n ( 1 i ω 0 t ) [ A n t n ( A 2 ) ]

Metrics