Abstract

A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber

Zhiyong Zhao, Yunli Dang, Ming Tang, Li Duan, Meng Wang, Hao Wu, Songnian Fu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 24(22) 25111-25118 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [Crossref]
  2. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  3. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  4. A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  5. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  6. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  7. M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, “Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry,” J. Lightwave Technol. 24(11), 4149–4154 (2006).
    [Crossref]
  8. X. Lu, M. A. Soto, and L. Thévenaz, “MilliKelvin resolution in cryogenic temperature distributed fibre sensing based on coherent Rayleigh scattering,” Proc. SPIE 9157, 91573R (2014).
    [Crossref]
  9. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
    [Crossref] [PubMed]
  10. G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
    [Crossref]
  11. G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
    [Crossref] [PubMed]
  12. S. M. Maughan, H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
    [Crossref]
  13. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [Crossref] [PubMed]
  14. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
    [Crossref] [PubMed]
  15. Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
    [Crossref] [PubMed]
  16. K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
    [Crossref] [PubMed]
  17. K. Y. Song, “High-sensitivity optical time-domain reflectometry based on Brillouin dynamic gratings in polarization maintaining fibers,” Opt. Express 20(25), 27377–27383 (2012).
    [Crossref] [PubMed]
  18. Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, L. Chen, X. Bao, and Z. Lu, “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Opt. Lett. 40(21), 5003–5006 (2015).
    [Crossref] [PubMed]
  19. L. Teng, H. Zhang, Y. Dong, D. Zhou, T. Jiang, W. Gao, Z. Lu, L. Chen, and X. Bao, “Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings,” Opt. Lett. 41(18), 4413–4416 (2016).
    [Crossref] [PubMed]
  20. Y. H. Kim, H. Kwon, J. Kim, and K. Y. Song, “Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers,” Opt. Express 24(19), 21399–21406 (2016).
    [Crossref] [PubMed]
  21. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
    [Crossref] [PubMed]
  22. H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
    [Crossref]
  23. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  24. J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1997).
  25. A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
    [Crossref]
  26. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
    [Crossref]
  27. M. Ren, D. P. Zhou, L. Chen, and X. Bao, “Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry,” Opt. Express 24(12), 13325–13333 (2016).
    [Crossref] [PubMed]
  28. Y. H. Kim and K. Y. Song, “Characterization of nonlinear temperature dependence of Brillouin dynamic grating spectra in polarization-maintaining fibers,” J. Lightwave Technol. 33(23), 4922–4927 (2015).
    [Crossref]

2016 (4)

2015 (3)

2014 (1)

X. Lu, M. A. Soto, and L. Thévenaz, “MilliKelvin resolution in cryogenic temperature distributed fibre sensing based on coherent Rayleigh scattering,” Proc. SPIE 9157, 91573R (2014).
[Crossref]

2013 (2)

2012 (1)

2010 (3)

2009 (4)

2008 (1)

2006 (2)

M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, “Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry,” J. Lightwave Technol. 24(11), 4149–4154 (2006).
[Crossref]

H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
[Crossref]

2005 (1)

2001 (1)

S. M. Maughan, H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Alahbabi, M. N.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bao, X.

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Bolognini, G.

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[Crossref] [PubMed]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Chen, L.

Cho, Y. T.

Corredera, P.

Costantini, D. M.

H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
[Crossref]

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Di Pasquale, F.

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Dong, Y.

Filograno, M. L.

Frazao, O.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Froggatt, M. E.

Gao, W.

Gifford, D. K.

Gonzalez-Herraez, M.

González-Herráez, M.

He, Z.

Hogari, K.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Hotate, K.

Imahama, M.

Jiang, T.

Kee, H.

S. M. Maughan, H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kim, C.-G.

H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
[Crossref]

Kim, J.

Kim, Y. H.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kreger, S.

Kubota, K.

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kwon, H.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Limberger, H. G.

H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
[Crossref]

Loayssa, A.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

Lu, X.

Lu, Z.

Martin-Lopez, S.

Martins, H. F.

Maughan, S. M.

S. M. Maughan, H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

Michaud, V.

H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
[Crossref]

Motil, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Newson, T. P.

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
[Crossref] [PubMed]

S. M. Maughan, H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Olier, D.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Ren, M.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Sagues, M.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

Salathé, R. P.

H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
[Crossref]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Soller, B. J.

Song, K. Y.

Soto, M. A.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Teng, L.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Thévenaz, L.

Tong, P.

Tur, M.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Wolfe, M.

Yoon, H.-J.

H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
[Crossref]

Zhang, H.

Zhou, D.

Zhou, D. P.

Zhu, T.

Zornoza, A.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

Zou, W.

Electron. Lett. (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multi-wavelength Fabry-Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

J. Intell. Mater. Syst. Struct. (1)

H.-J. Yoon, D. M. Costantini, H. G. Limberger, R. P. Salathé, C.-G. Kim, and V. Michaud, “In situ strain and temperature monitoring of adaptive composite materials,” J. Intell. Mater. Syst. Struct. 17(12), 1059–1067 (2006).
[Crossref]

J. Lightwave Technol. (7)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, “Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry,” J. Lightwave Technol. 24(11), 4149–4154 (2006).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

Y. H. Kim and K. Y. Song, “Characterization of nonlinear temperature dependence of Brillouin dynamic grating spectra in polarization-maintaining fibers,” J. Lightwave Technol. 33(23), 4922–4927 (2015).
[Crossref]

Meas. Sci. Technol. (2)

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol. 21(9), 094021 (2010).
[Crossref]

S. M. Maughan, H. Kee, and T. P. Newson, “Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

Opt. Express (7)

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref] [PubMed]

M. Ren, D. P. Zhou, L. Chen, and X. Bao, “Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry,” Opt. Express 24(12), 13325–13333 (2016).
[Crossref] [PubMed]

Y. H. Kim, H. Kwon, J. Kim, and K. Y. Song, “Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers,” Opt. Express 24(19), 21399–21406 (2016).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
[Crossref] [PubMed]

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[Crossref] [PubMed]

K. Y. Song, “High-sensitivity optical time-domain reflectometry based on Brillouin dynamic gratings in polarization maintaining fibers,” Opt. Express 20(25), 27377–27383 (2012).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Lett. (6)

Proc. SPIE (1)

X. Lu, M. A. Soto, and L. Thévenaz, “MilliKelvin resolution in cryogenic temperature distributed fibre sensing based on coherent Rayleigh scattering,” Proc. SPIE 9157, 91573R (2014).
[Crossref]

Other (1)

J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Reflection spectrum of the coherent Rayleigh light at a given position, showing the spectral shift due to the temperature change; (b) cross-correlation curve of the two reflection spectra.
Fig. 2
Fig. 2 Experimental setup to acquire the Rayleigh traces from 2 orthogonal axes in a very short time scale (milliseconds).
Fig. 3
Fig. 3 Birefringence measurement of an elliptical-core PM fiber. (a) Time-shifted Rayleigh traces obtained for both polarization axes and (b) cross-correlation of the Rayleigh traces.
Fig. 4
Fig. 4 Birefringence-dependent frequency shift measured versus distance (along the last 10 m of fiber) with a polarization-resolved ϕOTDR under different (a) temperature and (b) strain conditions for an elliptical-core PM fiber.
Fig. 5
Fig. 5 Birefringence-dependent frequency shift measured with a polarization-resolved ϕOTDR as a function of (a) temperature and (b) strain for an elliptical-core PM fiber.
Fig. 6
Fig. 6 Frequency shift of the cross-correlation spectrum measured using the ϕOTDR method, as a function of (a) temperature and (b) strain, for an elliptical core PM fiber.
Fig. 7
Fig. 7 (a) Frequency shift obtained from a standard ϕOTDR sensor and (b) frequency difference of birefringence measurements for an elliptical core PM fiber.
Fig. 8
Fig. 8 Retrieved (a) temperature and (b) strain variation profiles along the elliptical core fiber. Results demonstrate that the ϕOTDR-based approach here proposed allows for a correct discrimination between distributed temperature and strain profiles.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n x ( f x ) f x = n y ( f y ) f y Δf= f y n y g Δn,
[ Δ f ϕOTDR Δ f bire ]=[ S T,ϕOTDR S ε,ϕOTDR S T,bire S ε,bire ][ ΔT Δε ],
[ ΔT Δε ]= 1 S T,ϕOTDR S ε,bire S ε,ϕOTDR S T,bire [ S ε,bire S ε,ϕOTDR S T,bire S T,ϕOTDR ][ Δ f ϕOTDR Δ f bire ].
σ ΔT = ( S ε,bire σ Δf,ϕOTDR ) 2 + ( S ε,ϕOTDR σ Δf,bire ) 2 | S T,ϕOTDR S ε,bire S ε,ϕOTDR S T,bire | ,
σ Δε = ( S T,bire σ Δf,ϕOTDR ) 2 + ( S T,ϕOTDR σ Δf,bire ) 2 | S T,ϕOTDR S ε,bire S ε,ϕOTDR S T,bire | ,

Metrics