Abstract

In this paper, an electronically scanned polarized low-coherence interferometer (PLCI) based on a matrix charge-coupled-device and birefringence crystal with a two-dimensional angle is proposed and demonstrated. By using a sensing interferometer composed of the fiber end face and the glass surface, the proposed system is applied to displacement measurement. The two-dimensional interference fringes are captured and comprehensive demodulated by different algorithms. The experimental results showed that, compared with a traditional PLCI system, the proposed system significantly expanded the measurement range (reach ~301 μm), and meanwhile ensured low measurement deviation (kept within ± 7 nm) and high resolution (2.52 nm).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber Fabry–Perot interferometer based on phase-shifting technique and birefringence crystals

Junfeng Jiang, Zixu Zhao, Shuang Wang, Kun Liu, Yi Huang, Chenxi Shan, Hai Xiao, and Tiegen Liu
Opt. Express 26(17) 21606-21614 (2018)

Precision enhancement of three-dimensional displacement tracing for nano-fabrication based on low coherence interferometry

Yu Cheng, Xiangchao Zhang, He Yuan, Wei Wang, and Min Xu
Opt. Express 27(20) 28324-28336 (2019)

Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry

Shuang Wang, Tiegen Liu, Junfeng Jiang, Kun Liu, Jinde Yin, Zunqi Qin, and Shengliang Zou
Opt. Lett. 39(7) 1827-1830 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (1983).
  2. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
    [Crossref]
  3. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
    [Crossref] [PubMed]
  4. B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber Fabry–Pérot interferometer for measurement of gas pressure and temperature,” J. Lightwave Technol. 34(21), 4920–4925 (2016).
    [Crossref]
  5. K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
    [Crossref]
  6. C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).
  7. Y. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
    [Crossref]
  8. D. F. Murphy and D. A. Flavin, “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt. 39(25), 4607–4615 (2000).
    [Crossref] [PubMed]
  9. M. Tomić, Z. Đinović, and S. Petričević, “Fiber-optic pressure sensor based on Fizeau receiving interferometer,” in Proceedings of the 33rd International Convention MIPRO (IEEE, 2010), pp.100–104.
  10. F. Depiereux, P. Lehmann, T. Pfeifer, and R. Schmitt, “Fiber-optical sensor with miniaturized probe head and nanometer accuracy based on spatially modulated low-coherence interferogram analysis,” Appl. Opt. 46(17), 3425–3431 (2007).
    [Crossref] [PubMed]
  11. S. Wang, T. Liu, J. Jiang, K. Liu, J. Yin, Z. Qin, and S. Zou, “Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry,” Opt. Lett. 39(7), 1827–1830 (2014).
    [Crossref] [PubMed]
  12. J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, “A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency,” Opt. Express 20(16), 18117–18126 (2012).
    [Crossref] [PubMed]
  13. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999).
    [Crossref]
  14. S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, J. Shi, S. Zou, and M. Zhang, “Birefringence-dispersion-induced frequency domain nonlinearity compensation for polarized low-coherence interferometry demodulation,” J. Lightwave Technol. 33(23), 4842–4848 (2015).
    [Crossref]
  15. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13(4), 832–843 (1996).
    [Crossref]
  16. T. Liu, J. Yin, J. Jiang, K. Liu, S. Wang, and S. Zou, “Differential-pressure-based fiber-optic temperature sensor using Fabry-Perot interferometry,” Opt. Lett. 40(6), 1049–1052 (2015).
    [Crossref] [PubMed]
  17. L. Cao, H. Lin, and V. M. Mirsky, “Surface plasmon resonance biosensor for enrofloxacin based on deoxyribonucleic acid,” Anal. Chim. Acta 589(1), 1–5 (2007).
    [Crossref] [PubMed]

2017 (1)

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (1)

2013 (1)

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).

2012 (1)

2007 (2)

2002 (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

2000 (1)

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999).
[Crossref]

1996 (2)

Y. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13(4), 832–843 (1996).
[Crossref]

1992 (1)

Al-Chalabi, S. A.

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (1983).

Baptista, J. M.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).

Cao, L.

L. Cao, H. Lin, and V. M. Mirsky, “Surface plasmon resonance biosensor for enrofloxacin based on deoxyribonucleic acid,” Anal. Chim. Acta 589(1), 1–5 (2007).
[Crossref] [PubMed]

Culshaw, B.

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (1983).

Davies, D. E. N.

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (1983).

Depiereux, F.

Ðinovic, Z.

M. Tomić, Z. Đinović, and S. Petričević, “Fiber-optic pressure sensor based on Fizeau receiving interferometer,” in Proceedings of the 33rd International Convention MIPRO (IEEE, 2010), pp.100–104.

Dresel, T.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Flavin, D. A.

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999).
[Crossref]

Gouveia, C.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).

Häusler, G.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Jackson, D. A.

Y. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

Jiang, J.

Jiang, M.

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

Jorge, P. A. S.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).

Karamata, B.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Larkin, K. G.

Lasser, T.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Latific, H.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).

Lehmann, P.

Li, D.

Li, J. Q.

Li, K.

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

Lin, H.

L. Cao, H. Lin, and V. M. Mirsky, “Surface plasmon resonance biosensor for enrofloxacin based on deoxyribonucleic acid,” Anal. Chim. Acta 589(1), 1–5 (2007).
[Crossref] [PubMed]

Liu, K.

Liu, T.

Liu, Y. M.

Marques, M. J. B.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).

Meng, X.

Mirsky, V. M.

L. Cao, H. Lin, and V. M. Mirsky, “Surface plasmon resonance biosensor for enrofloxacin based on deoxyribonucleic acid,” Anal. Chim. Acta 589(1), 1–5 (2007).
[Crossref] [PubMed]

Murphy, D. F.

Petricevic, S.

M. Tomić, Z. Đinović, and S. Petričević, “Fiber-optic pressure sensor based on Fizeau receiving interferometer,” in Proceedings of the 33rd International Convention MIPRO (IEEE, 2010), pp.100–104.

Pfeifer, T.

Qin, Z.

Rao, Y.

Y. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

Schmitt, R.

Shi, J.

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Tomic, M.

M. Tomić, Z. Đinović, and S. Petričević, “Fiber-optic pressure sensor based on Fizeau receiving interferometer,” in Proceedings of the 33rd International Convention MIPRO (IEEE, 2010), pp.100–104.

Venzke, H.

Wang, D. N.

Wang, S.

Wang, Z.

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

Wu, F.

Xu, B.

Yin, J.

Zawadzki, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

Zhang, M.

Zhang, Y.

Zhao, Z.

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

Zibaiic, M.

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).

Zou, S.

Anal. Chim. Acta (1)

L. Cao, H. Lin, and V. M. Mirsky, “Surface plasmon resonance biosensor for enrofloxacin based on deoxyribonucleic acid,” Anal. Chim. Acta 589(1), 1–5 (2007).
[Crossref] [PubMed]

Appl. Opt. (3)

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

Y. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]

Opt. Commun. (3)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1), 67–74 (2002).
[Crossref]

K. Li, M. Jiang, Z. Zhao, and Z. Wang, “Low coherence technique to interrogate optical sensors based on selectively filled double-core photonic crystal fiber for temperature measurement,” Opt. Commun. 389(15), 234–238 (2017).
[Crossref]

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Sensor. Actuat. Biol. Chem. (1)

C. Gouveia, M. Zibaiic, H. Latific, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. Biol. Chem. 188, 1212–1217 (2013).

Other (2)

M. Tomić, Z. Đinović, and S. Petričević, “Fiber-optic pressure sensor based on Fizeau receiving interferometer,” in Proceedings of the 33rd International Convention MIPRO (IEEE, 2010), pp.100–104.

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in First International Conference on Optical Fibre Sensors (1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the proposed interferometer based on a matrix CCD and birefringence crystal with two-dimensional angle.
Fig. 2
Fig. 2 Schematic diagram of the birefringence crystal with two-dimensional angle.
Fig. 3
Fig. 3 Simulation results: (a)(b)When vertical angle of the birefringence crystal is 0°. (c)(d)When vertical angle of the birefringence crystal is 0.64°. (e) The interference fringes of line 100 and line 1999 in (d). (f) The interference fringes of column 1060 and column 1100 in (d).
Fig. 4
Fig. 4 Interferogram detected by the matrix CCD.
Fig. 5
Fig. 5 (a) Original data of line 1020. (b) Original data of column 1454. (c) Filtered data of line 1020 and the estimated position of matching-OPD. (d) Filtered data of column 1454 and the accurate position of matching-OPD.
Fig. 6
Fig. 6 When line 1020 is selected: (a) Two-dimensional demodulation result using the proposed algorithm and horizontal demodulation result using the SFDA-based algorithm. (b) Measurement deviations of the two demodulation results. When line 1010 is selected: (c) (d).
Fig. 7
Fig. 7 Demodulation result of the standard block.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S ( k ) = 2 ln 2 π Δ k exp [ 4 ln 2 ( k k 0 ) 2 Δ k 2 ] ,
I ( d , h ) = 0 + S ( k ) cos [ k ( Δ n d 2 h ) ] d k = exp [ Δ k 2 ( Δ n d 2 h ) 2 16 ln 2 ] cos [ k 0 ( Δ n d 2 h ) ] .
l ( x , y ) = d ( x , y ) Δ n ,
d ( x , y ) = x tan ( α ) y tan ( β ) + d 0 ,
d ( x , y 0 ) = x tan ( α ) y 0 tan ( β ) + d 0
d ( x e p , y ) = x e p tan ( α ) y tan ( β ) + d 0 ,
d ( x e p , y a p ) = x e p tan ( α ) y a p tan ( β ) + d 0
h = 1 2 d ( x e p , y a p ) Δ n .
Δ l x = Δ n p x tan ( α ) ,
Δ l y = Δ n p y tan ( β ) ,

Metrics