Abstract

Most reported photoacoustic ocular imaging work to date uses small animals, such as mice and rats, the eyeball sizes of which are less than one-third of those of humans, posing challenges for clinical translation. Here we developed a novel integrated photoacoustic microscopy (PAM) and optical coherence tomography (OCT) system for dual-modality chorioretinal imaging of larger animals, such as rabbits. The system has quantified lateral resolutions of 4.1 µm (PAM) and 3.8 µm (OCT), and axial resolutions of 37.0 µm (PAM) and 4.0 µm (OCT) at the focal plane of the objective. Experimental results in living rabbits demonstrate that the PAM can noninvasively visualize individual depth-resolved retinal and choroidal vessels using a laser exposure dose of ~80 nJ below the American National Standards Institute (ANSI) safety limit 160 nJ at 570 nm; and the OCT can finely distinguish different retinal layers, the choroid, and the sclera. This reported work may be a major step forward in clinical translation of the technology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared light photoacoustic ophthalmoscopy

Tan Liu, Qing Wei, Wei Song, Janice M. Burke, Shuliang Jiao, and Hao F. Zhang
Biomed. Opt. Express 3(4) 792-799 (2012)

Optical coherence angiography

Shuichi Makita, Youngjoo Hong, Masahiro Yamanari, Toyohiko Yatagai, and Yoshiaki Yasuno
Opt. Express 14(17) 7821-7840 (2006)

In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography

Yoshiaki Yasuno, Youngjoo Hong, Shuichi Makita, Masahiro Yamanari, Masahiro Akiba, Masahiro Miura, and Toyohiko Yatagai
Opt. Express 15(10) 6121-6139 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Pascolini and S. P. Mariotti, “Global estimates of visual impairment: 2010,” Br. J. Ophthalmol. 96(5), 614–618 (2012).
    [Crossref] [PubMed]
  2. P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121(12), 2489–2500 (2014).
    [Crossref] [PubMed]
  3. A. Agarwal, Fundus Fluorescein and Indocyanine Green Angiography: a Textbook and Atlas (SLACK Incorporated, 2007).
  4. P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
    [Crossref] [PubMed]
  5. S. P. Mattison, W. Kim, J. Park, and B. E. Applegate, “Molecular imaging in optical coherence tomography,” Curr. Mol. Imaging 3(2), 88–105 (2014).
    [Crossref] [PubMed]
  6. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  7. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, rsfs20110028 (2011).
    [Crossref]
  8. A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
    [Crossref]
  9. J. Kim, D. Lee, U. Jung, and C. Kim, “Photoacoustic imaging platforms for multimodal imaging,” Ultrasonography 34(2), 88–97 (2015).
    [Crossref] [PubMed]
  10. C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
    [Crossref] [PubMed]
  11. C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
    [PubMed]
  12. K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
    [Crossref] [PubMed]
  13. X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
    [Crossref] [PubMed]
  14. S. Zackrisson, S. M. van de Ven, and S. S. Gambhir, “Light in and sound out: emerging translational strategies for photoacoustic imaging,” Cancer Res. 74(4), 979–1004 (2014).
    [Crossref] [PubMed]
  15. C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
    [Crossref] [PubMed]
  16. C. Tian, Z. Xie, M. L. Fabiilli, S. Liu, C. Wang, Q. Cheng, and X. Wang, “Dual-pulse nonlinear photoacoustic technique: a practical investigation,” Biomed. Opt. Express 6(8), 2923–2933 (2015).
    [Crossref] [PubMed]
  17. R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
    [Crossref] [PubMed]
  18. T. Feng, K. M. Kozloff, C. Tian, J. E. Perosky, Y.-S. Hsiao, S. Du, J. Yuan, C. X. Deng, and X. Wang, “Bone assessment via thermal photo-acoustic measurements,” Opt. Lett. 40(8), 1721–1724 (2015).
    [Crossref] [PubMed]
  19. W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: a mini review,” Photoacoustics 4(3), 112–123 (2016).
    [Crossref] [PubMed]
  20. A. de la Zerda, Y. M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B. T. Khuri-Yakub, M. S. Blumenkranz, D. M. Moshfeghi, and S. S. Gambhir, “Photoacoustic ocular imaging,” Opt. Lett. 35(3), 270–272 (2010).
    [Crossref] [PubMed]
  21. S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35(1), 1–3 (2010).
    [Crossref] [PubMed]
  22. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
    [Crossref] [PubMed]
  23. R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
    [Crossref] [PubMed]
  24. N. Wu, S. Ye, Q. Ren, and C. Li, “High-resolution dual-modality photoacoustic ocular imaging,” Opt. Lett. 39(8), 2451–2454 (2014).
    [Crossref] [PubMed]
  25. W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
    [Crossref] [PubMed]
  26. S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
    [Crossref] [PubMed]
  27. A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
    [Crossref] [PubMed]
  28. P. J. Manning, D. H. Ringler, and C. E. Newcomer, The Biology of the Laboratory Rabbit (Academic, 1994).
  29. L. Ivert, J. Kong, and P. Gouras, “Changes in the choroidal circulation of rabbit following RPE removal,” Graefes Arch. Clin. Exp. Ophthalmol. 241(8), 656–666 (2003).
    [Crossref] [PubMed]
  30. C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
    [Crossref] [PubMed]
  31. A. Takeuchi, G. Kricorian, X. Y. Yao, J. W. Kenny, and M. F. Marmor, “The rate and source of albumin entry into saline-filled experimental retinal detachments,” Invest. Ophthalmol. Vis. Sci. 35(11), 3792–3798 (1994).
    [PubMed]
  32. A. Negi and M. F. Marmor, “Effects of subretinal and systemic osmolality on the rate of subretinal fluid resorption,” Invest. Ophthalmol. Vis. Sci. 25(5), 616–620 (1984).
    [PubMed]
  33. T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
    [Crossref] [PubMed]
  34. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [Crossref] [PubMed]
  35. Z. Alkin, A. H. Kashani, and M. S. Humayun, “Spectral Domain OCT Measurements of Rabbit Retinal Anatomy,” Invest. Ophthalmol. Vis. Sci. 52, 2682 (2011).
  36. A. H. Kashani, E. Kirkman, G. Martin, and M. S. Humayun, “Hyperspectral computed tomographic imaging spectroscopy of vascular oxygen gradients in the rabbit retina in vivo,” PLoS One 6(9), e24482 (2011).
    [Crossref] [PubMed]
  37. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1 - 2007 (American National Standards Institute, Inc., 2007).
  38. T. Liu, Q. Wei, W. Song, J. M. Burke, S. Jiao, and H. F. Zhang, “Near-infrared light photoacoustic ophthalmoscopy,” Biomed. Opt. Express 3(4), 792–799 (2012).
    [Crossref] [PubMed]

2017 (1)

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

2016 (5)

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
[Crossref] [PubMed]

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: a mini review,” Photoacoustics 4(3), 112–123 (2016).
[Crossref] [PubMed]

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

2015 (7)

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

J. Kim, D. Lee, U. Jung, and C. Kim, “Photoacoustic imaging platforms for multimodal imaging,” Ultrasonography 34(2), 88–97 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

T. Feng, K. M. Kozloff, C. Tian, J. E. Perosky, Y.-S. Hsiao, S. Du, J. Yuan, C. X. Deng, and X. Wang, “Bone assessment via thermal photo-acoustic measurements,” Opt. Lett. 40(8), 1721–1724 (2015).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, S. Liu, C. Wang, Q. Cheng, and X. Wang, “Dual-pulse nonlinear photoacoustic technique: a practical investigation,” Biomed. Opt. Express 6(8), 2923–2933 (2015).
[Crossref] [PubMed]

2014 (5)

N. Wu, S. Ye, Q. Ren, and C. Li, “High-resolution dual-modality photoacoustic ocular imaging,” Opt. Lett. 39(8), 2451–2454 (2014).
[Crossref] [PubMed]

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121(12), 2489–2500 (2014).
[Crossref] [PubMed]

S. P. Mattison, W. Kim, J. Park, and B. E. Applegate, “Molecular imaging in optical coherence tomography,” Curr. Mol. Imaging 3(2), 88–105 (2014).
[Crossref] [PubMed]

S. Zackrisson, S. M. van de Ven, and S. S. Gambhir, “Light in and sound out: emerging translational strategies for photoacoustic imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

D. Pascolini and S. P. Mariotti, “Global estimates of visual impairment: 2010,” Br. J. Ophthalmol. 96(5), 614–618 (2012).
[Crossref] [PubMed]

T. Liu, Q. Wei, W. Song, J. M. Burke, S. Jiao, and H. F. Zhang, “Near-infrared light photoacoustic ophthalmoscopy,” Biomed. Opt. Express 3(4), 792–799 (2012).
[Crossref] [PubMed]

2011 (2)

Z. Alkin, A. H. Kashani, and M. S. Humayun, “Spectral Domain OCT Measurements of Rabbit Retinal Anatomy,” Invest. Ophthalmol. Vis. Sci. 52, 2682 (2011).

A. H. Kashani, E. Kirkman, G. Martin, and M. S. Humayun, “Hyperspectral computed tomographic imaging spectroscopy of vascular oxygen gradients in the rabbit retina in vivo,” PLoS One 6(9), e24482 (2011).
[Crossref] [PubMed]

2010 (5)

2009 (1)

2003 (1)

L. Ivert, J. Kong, and P. Gouras, “Changes in the choroidal circulation of rabbit following RPE removal,” Graefes Arch. Clin. Exp. Ophthalmol. 241(8), 656–666 (2003).
[Crossref] [PubMed]

1996 (1)

C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
[Crossref] [PubMed]

1994 (1)

A. Takeuchi, G. Kricorian, X. Y. Yao, J. W. Kenny, and M. F. Marmor, “The rate and source of albumin entry into saline-filled experimental retinal detachments,” Invest. Ophthalmol. Vis. Sci. 35(11), 3792–3798 (1994).
[PubMed]

1984 (1)

A. Negi and M. F. Marmor, “Effects of subretinal and systemic osmolality on the rate of subretinal fluid resorption,” Invest. Ophthalmol. Vis. Sci. 25(5), 616–620 (1984).
[PubMed]

1972 (1)

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[Crossref] [PubMed]

Alkin, Z.

Z. Alkin, A. H. Kashani, and M. S. Humayun, “Spectral Domain OCT Measurements of Rabbit Retinal Anatomy,” Invest. Ophthalmol. Vis. Sci. 52, 2682 (2011).

Andrews-Kaminsky, L. B.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Applegate, B. E.

S. P. Mattison, W. Kim, J. Park, and B. E. Applegate, “Molecular imaging in optical coherence tomography,” Curr. Mol. Imaging 3(2), 88–105 (2014).
[Crossref] [PubMed]

Beebe, D. C.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Blumenkranz, M. S.

Bodapati, S.

Burke, J. M.

Cannata, J. M.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Chen, R.

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

Chen, Y. C.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Cheng, Q.

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, S. Liu, C. Wang, Q. Cheng, and X. Wang, “Dual-pulse nonlinear photoacoustic technique: a practical investigation,” Biomed. Opt. Express 6(8), 2923–2933 (2015).
[Crossref] [PubMed]

Cheng, X.

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

Chiu, C. T.

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

Chon, C. H.

C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
[Crossref] [PubMed]

Coleman, D. J.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Dalal, R.

C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
[Crossref] [PubMed]

de la Zerda, A.

Deng, C. X.

Dollberg, Y.

Du, S.

Fabiilli, M. L.

Fan, X.

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

Fawzi, A.

Fawzi, A. A.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Feng, T.

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

T. Feng, K. M. Kozloff, C. Tian, J. E. Perosky, Y.-S. Hsiao, S. Du, J. Yuan, C. X. Deng, and X. Wang, “Bone assessment via thermal photo-acoustic measurements,” Opt. Lett. 40(8), 1721–1724 (2015).
[Crossref] [PubMed]

Gambhir, S. S.

S. Zackrisson, S. M. van de Ven, and S. S. Gambhir, “Light in and sound out: emerging translational strategies for photoacoustic imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

A. de la Zerda, Y. M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B. T. Khuri-Yakub, M. S. Blumenkranz, D. M. Moshfeghi, and S. S. Gambhir, “Photoacoustic ocular imaging,” Opt. Lett. 35(3), 270–272 (2010).
[Crossref] [PubMed]

Girish, G.

R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
[Crossref] [PubMed]

Gouras, P.

L. Ivert, J. Kong, and P. Gouras, “Changes in the choroidal circulation of rabbit following RPE removal,” Graefes Arch. Clin. Exp. Ophthalmol. 241(8), 656–666 (2003).
[Crossref] [PubMed]

Guo, L. J.

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

Hennen, S. N.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Hsiao, Y.-S.

Hu, J.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35(1), 1–3 (2010).
[Crossref] [PubMed]

Hughes, A.

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[Crossref] [PubMed]

Humayun, M. S.

A. H. Kashani, E. Kirkman, G. Martin, and M. S. Humayun, “Hyperspectral computed tomographic imaging spectroscopy of vascular oxygen gradients in the rabbit retina in vivo,” PLoS One 6(9), e24482 (2011).
[Crossref] [PubMed]

Z. Alkin, A. H. Kashani, and M. S. Humayun, “Spectral Domain OCT Measurements of Rabbit Retinal Anatomy,” Invest. Ophthalmol. Vis. Sci. 52, 2682 (2011).

Ivert, L.

L. Ivert, J. Kong, and P. Gouras, “Changes in the choroidal circulation of rabbit following RPE removal,” Graefes Arch. Clin. Exp. Ophthalmol. 241(8), 656–666 (2003).
[Crossref] [PubMed]

Jiang, M.

Jiao, S.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

T. Liu, Q. Wei, W. Song, J. M. Burke, S. Jiao, and H. F. Zhang, “Near-infrared light photoacoustic ophthalmoscopy,” Biomed. Opt. Express 3(4), 792–799 (2012).
[Crossref] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[Crossref] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
[Crossref] [PubMed]

Jung, U.

J. Kim, D. Lee, U. Jung, and C. Kim, “Photoacoustic imaging platforms for multimodal imaging,” Ultrasonography 34(2), 88–97 (2015).
[Crossref] [PubMed]

Kalishman, J.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Kashani, A. H.

Z. Alkin, A. H. Kashani, and M. S. Humayun, “Spectral Domain OCT Measurements of Rabbit Retinal Anatomy,” Invest. Ophthalmol. Vis. Sci. 52, 2682 (2011).

A. H. Kashani, E. Kirkman, G. Martin, and M. S. Humayun, “Hyperspectral computed tomographic imaging spectroscopy of vascular oxygen gradients in the rabbit retina in vivo,” PLoS One 6(9), e24482 (2011).
[Crossref] [PubMed]

Kass, M. A.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Keane, P. A.

P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121(12), 2489–2500 (2014).
[Crossref] [PubMed]

P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
[Crossref] [PubMed]

Kenny, J. W.

A. Takeuchi, G. Kricorian, X. Y. Yao, J. W. Kenny, and M. F. Marmor, “The rate and source of albumin entry into saline-filled experimental retinal detachments,” Invest. Ophthalmol. Vis. Sci. 35(11), 3792–3798 (1994).
[PubMed]

Keswani, R. K.

R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
[Crossref] [PubMed]

Khuri-Yakub, B. T.

Kim, C.

J. Kim, D. Lee, U. Jung, and C. Kim, “Photoacoustic imaging platforms for multimodal imaging,” Ultrasonography 34(2), 88–97 (2015).
[Crossref] [PubMed]

Kim, H. H.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Kim, J.

J. Kim, D. Lee, U. Jung, and C. Kim, “Photoacoustic imaging platforms for multimodal imaging,” Ultrasonography 34(2), 88–97 (2015).
[Crossref] [PubMed]

Kim, K. H.

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

Kim, R. Y.

C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
[Crossref] [PubMed]

Kim, W.

S. P. Mattison, W. Kim, J. Park, and B. E. Applegate, “Molecular imaging in optical coherence tomography,” Curr. Mol. Imaging 3(2), 88–105 (2014).
[Crossref] [PubMed]

Kirk Shung, K.

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

Kirkman, E.

A. H. Kashani, E. Kirkman, G. Martin, and M. S. Humayun, “Hyperspectral computed tomographic imaging spectroscopy of vascular oxygen gradients in the rabbit retina in vivo,” PLoS One 6(9), e24482 (2011).
[Crossref] [PubMed]

Kong, F.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Kong, J.

L. Ivert, J. Kong, and P. Gouras, “Changes in the choroidal circulation of rabbit following RPE removal,” Graefes Arch. Clin. Exp. Ophthalmol. 241(8), 656–666 (2003).
[Crossref] [PubMed]

Kozloff, K. M.

Kricorian, G.

A. Takeuchi, G. Kricorian, X. Y. Yao, J. W. Kenny, and M. F. Marmor, “The rate and source of albumin entry into saline-filled experimental retinal detachments,” Invest. Ophthalmol. Vis. Sci. 35(11), 3792–3798 (1994).
[PubMed]

Lee, D.

J. Kim, D. Lee, U. Jung, and C. Kim, “Photoacoustic imaging platforms for multimodal imaging,” Ultrasonography 34(2), 88–97 (2015).
[Crossref] [PubMed]

Li, C.

Li, K.

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

Linsenmeier, R. A.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Liu, B.

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

Liu, S.

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, S. Liu, C. Wang, Q. Cheng, and X. Wang, “Dual-pulse nonlinear photoacoustic technique: a practical investigation,” Biomed. Opt. Express 6(8), 2923–2933 (2015).
[Crossref] [PubMed]

Liu, T.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

T. Liu, Q. Wei, W. Song, J. M. Burke, S. Jiao, and H. F. Zhang, “Near-infrared light photoacoustic ophthalmoscopy,” Biomed. Opt. Express 3(4), 792–799 (2012).
[Crossref] [PubMed]

Liu, W.

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: a mini review,” Photoacoustics 4(3), 112–123 (2016).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Lloyd, H. O.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Luo, W.

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

Ma, T.

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

Mariotti, S. P.

D. Pascolini and S. P. Mariotti, “Global estimates of visual impairment: 2010,” Br. J. Ophthalmol. 96(5), 614–618 (2012).
[Crossref] [PubMed]

Marmor, M. F.

C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
[Crossref] [PubMed]

A. Takeuchi, G. Kricorian, X. Y. Yao, J. W. Kenny, and M. F. Marmor, “The rate and source of albumin entry into saline-filled experimental retinal detachments,” Invest. Ophthalmol. Vis. Sci. 35(11), 3792–3798 (1994).
[PubMed]

A. Negi and M. F. Marmor, “Effects of subretinal and systemic osmolality on the rate of subretinal fluid resorption,” Invest. Ophthalmol. Vis. Sci. 25(5), 616–620 (1984).
[PubMed]

Martin, G.

A. H. Kashani, E. Kirkman, G. Martin, and M. S. Humayun, “Hyperspectral computed tomographic imaging spectroscopy of vascular oxygen gradients in the rabbit retina in vivo,” PLoS One 6(9), e24482 (2011).
[Crossref] [PubMed]

Maslov, K.

Maslov, K. I.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Mattison, S. P.

S. P. Mattison, W. Kim, J. Park, and B. E. Applegate, “Molecular imaging in optical coherence tomography,” Curr. Mol. Imaging 3(2), 88–105 (2014).
[Crossref] [PubMed]

Moshfeghi, D. M.

Negi, A.

A. Negi and M. F. Marmor, “Effects of subretinal and systemic osmolality on the rate of subretinal fluid resorption,” Invest. Ophthalmol. Vis. Sci. 25(5), 616–620 (1984).
[PubMed]

Ntziachristos, V.

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

Oliver, D. E.

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

Park, J.

S. P. Mattison, W. Kim, J. Park, and B. E. Applegate, “Molecular imaging in optical coherence tomography,” Curr. Mol. Imaging 3(2), 88–105 (2014).
[Crossref] [PubMed]

Pascolini, D.

D. Pascolini and S. P. Mariotti, “Global estimates of visual impairment: 2010,” Br. J. Ophthalmol. 96(5), 614–618 (2012).
[Crossref] [PubMed]

Paulus, Y. M.

Perosky, J. E.

Peryea, T.

R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
[Crossref] [PubMed]

Puliafito, C. A.

Qian, W.

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

Rao, B.

Ren, Q.

Rosania, G. R.

R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
[Crossref] [PubMed]

Sadda, S. R.

P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121(12), 2489–2500 (2014).
[Crossref] [PubMed]

P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
[Crossref] [PubMed]

Shao, X.

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

Sheibani, N.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Shui, Y.-B.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Shung, K. K.

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[Crossref] [PubMed]

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Silverman, R. H.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Song, W.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

T. Liu, Q. Wei, W. Song, J. M. Burke, S. Jiao, and H. F. Zhang, “Near-infrared light photoacoustic ophthalmoscopy,” Biomed. Opt. Express 3(4), 792–799 (2012).
[Crossref] [PubMed]

Takeuchi, A.

C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
[Crossref] [PubMed]

A. Takeuchi, G. Kricorian, X. Y. Yao, J. W. Kenny, and M. F. Marmor, “The rate and source of albumin entry into saline-filled experimental retinal detachments,” Invest. Ophthalmol. Vis. Sci. 35(11), 3792–3798 (1994).
[PubMed]

Taruttis, A.

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

Teed, R.

Tian, C.

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
[Crossref] [PubMed]

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

T. Feng, K. M. Kozloff, C. Tian, J. E. Perosky, Y.-S. Hsiao, S. Du, J. Yuan, C. X. Deng, and X. Wang, “Bone assessment via thermal photo-acoustic measurements,” Opt. Lett. 40(8), 1721–1724 (2015).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, S. Liu, C. Wang, Q. Cheng, and X. Wang, “Dual-pulse nonlinear photoacoustic technique: a practical investigation,” Biomed. Opt. Express 6(8), 2923–2933 (2015).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
[Crossref] [PubMed]

van de Ven, S. M.

S. Zackrisson, S. M. van de Ven, and S. S. Gambhir, “Light in and sound out: emerging translational strategies for photoacoustic imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

Wang, C.

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, S. Liu, C. Wang, Q. Cheng, and X. Wang, “Dual-pulse nonlinear photoacoustic technique: a practical investigation,” Biomed. Opt. Express 6(8), 2923–2933 (2015).
[Crossref] [PubMed]

Wang, L. V.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35(1), 1–3 (2010).
[Crossref] [PubMed]

Wang, X.

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
[Crossref] [PubMed]

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, S. Liu, C. Wang, Q. Cheng, and X. Wang, “Dual-pulse nonlinear photoacoustic technique: a practical investigation,” Biomed. Opt. Express 6(8), 2923–2933 (2015).
[Crossref] [PubMed]

T. Feng, K. M. Kozloff, C. Tian, J. E. Perosky, Y.-S. Hsiao, S. Du, J. Yuan, C. X. Deng, and X. Wang, “Bone assessment via thermal photo-acoustic measurements,” Opt. Lett. 40(8), 1721–1724 (2015).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
[Crossref] [PubMed]

Wei, Q.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

T. Liu, Q. Wei, W. Song, J. M. Burke, S. Jiao, and H. F. Zhang, “Near-infrared light photoacoustic ophthalmoscopy,” Biomed. Opt. Express 3(4), 792–799 (2012).
[Crossref] [PubMed]

Wu, N.

Xie, Z.

Xing, W.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Xu, G.

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

Yao, X. Y.

C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
[Crossref] [PubMed]

A. Takeuchi, G. Kricorian, X. Y. Yao, J. W. Kenny, and M. F. Marmor, “The rate and source of albumin entry into saline-filled experimental retinal detachments,” Invest. Ophthalmol. Vis. Sci. 35(11), 3792–3798 (1994).
[PubMed]

Ye, S.

Yi, J.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Yuan, J.

Zackrisson, S.

S. Zackrisson, S. M. van de Ven, and S. S. Gambhir, “Light in and sound out: emerging translational strategies for photoacoustic imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

Zhang, C.

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

Zhang, H. F.

Zhang, J.

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

Zhang, P.

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

Zhang, X.

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

Zhou, Q.

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[Crossref] [PubMed]

Zhou, Y.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Zhu, J.

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

Adv Sci (Weinh) (1)

C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, and X. Wang, “Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells,” Adv Sci (Weinh) 3(12), 1600237 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

D. Pascolini and S. P. Mariotti, “Global estimates of visual impairment: 2010,” Br. J. Ophthalmol. 96(5), 614–618 (2012).
[Crossref] [PubMed]

Cancer Res. (1)

S. Zackrisson, S. M. van de Ven, and S. S. Gambhir, “Light in and sound out: emerging translational strategies for photoacoustic imaging,” Cancer Res. 74(4), 979–1004 (2014).
[Crossref] [PubMed]

Curr. Mol. Imaging (1)

S. P. Mattison, W. Kim, J. Park, and B. E. Applegate, “Molecular imaging in optical coherence tomography,” Curr. Mol. Imaging 3(2), 88–105 (2014).
[Crossref] [PubMed]

Exp. Eye Res. (1)

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Eye (Lond.) (1)

P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

L. Ivert, J. Kong, and P. Gouras, “Changes in the choroidal circulation of rabbit following RPE removal,” Graefes Arch. Clin. Exp. Ophthalmol. 241(8), 656–666 (2003).
[Crossref] [PubMed]

IEEE Sens. J. (1)

C. Tian, T. Feng, C. Wang, S. Liu, Q. Cheng, D. E. Oliver, X. Wang, and G. Xu, “Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer,” IEEE Sens. J. 16(23), 8381–8388 (2016).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

A. Takeuchi, G. Kricorian, X. Y. Yao, J. W. Kenny, and M. F. Marmor, “The rate and source of albumin entry into saline-filled experimental retinal detachments,” Invest. Ophthalmol. Vis. Sci. 35(11), 3792–3798 (1994).
[PubMed]

A. Negi and M. F. Marmor, “Effects of subretinal and systemic osmolality on the rate of subretinal fluid resorption,” Invest. Ophthalmol. Vis. Sci. 25(5), 616–620 (1984).
[PubMed]

Z. Alkin, A. H. Kashani, and M. S. Humayun, “Spectral Domain OCT Measurements of Rabbit Retinal Anatomy,” Invest. Ophthalmol. Vis. Sci. 52, 2682 (2011).

J. Biomed. Opt. (1)

T. Ma, X. Zhang, C. T. Chiu, R. Chen, K. Kirk Shung, Q. Zhou, and S. Jiao, “Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy,” J. Biomed. Opt. 19(1), 16015 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun. 7, 11731 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

Ophthalmology (1)

P. A. Keane and S. R. Sadda, “Retinal imaging in the twenty-first century: state of the art and future directions,” Ophthalmology 121(12), 2489–2500 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Photoacoustics (1)

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: a mini review,” Photoacoustics 4(3), 112–123 (2016).
[Crossref] [PubMed]

PLoS One (1)

A. H. Kashani, E. Kirkman, G. Martin, and M. S. Humayun, “Hyperspectral computed tomographic imaging spectroscopy of vascular oxygen gradients in the rabbit retina in vivo,” PLoS One 6(9), e24482 (2011).
[Crossref] [PubMed]

Retina (1)

C. H. Chon, X. Y. Yao, R. Dalal, A. Takeuchi, R. Y. Kim, and M. F. Marmor, “An experimental model of retinal pigment epithelial and neurosensory serous detachment,” Retina 16(2), 139–144 (1996).
[Crossref] [PubMed]

Sci. Rep. (3)

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

R. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, and G. R. Rosania, “Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent,” Sci. Rep. 6(1), 23528 (2016).
[Crossref] [PubMed]

K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. Wang, and X. Fan, “Air-coupled ultrasound detection using capillary-based optical ring resonators,” Sci. Rep. 7(1), 109 (2017).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Ultrasonography (1)

J. Kim, D. Lee, U. Jung, and C. Kim, “Photoacoustic imaging platforms for multimodal imaging,” Ultrasonography 34(2), 88–97 (2015).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Vision Res. (1)

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[Crossref] [PubMed]

Other (4)

P. J. Manning, D. H. Ringler, and C. E. Newcomer, The Biology of the Laboratory Rabbit (Academic, 1994).

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, rsfs20110028 (2011).
[Crossref]

A. Agarwal, Fundus Fluorescein and Indocyanine Green Angiography: a Textbook and Atlas (SLACK Incorporated, 2007).

Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1 - 2007 (American National Standards Institute, Inc., 2007).

Supplementary Material (1)

NameDescription
» Visualization 1: MPG (4790 KB)      Volumetric rending of retinal vessels

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Integrated photoacoustic microscopy and optical coherence tomography for chorioretinal imaging. (a) Schematic; (b) physical setup. OPO: Optical parametric oscillator; SLD: superluminescent diode; BS: beam splitter; DM: dichroic mirror; DCG: dispersion compensation glass; OL: ophthalmic lens.

Fig. 2
Fig. 2

System performance calibration using a chromium grating (linewidth: 10 μm, pitch: 40 μm) coated on a coverslip. (a) PAM image of the grating. Inset is the bright field image. (b) Fitted edge spread function (ESF) and line spread function (LSF) of the experimental data in the rectangular box in (a) show that PAM has a lateral resolution of 4.1 μm. (c) Summation of two A-line axial spread function shows that PAM has an axial resolution of 37.0 μm. (d) OCT image of the grating. (e) Fitted ESF and LSF of the experimental data in the rectangular box in (d) show that OCT has a lateral resolution of 3.8 μm at −6 dB. (f) A-line spread function shows that OCT has an axial resolution of 4.0 μm at −6 dB in air.

Fig. 3
Fig. 3

PAM and OCT dual-modality imaging of retinal blood vessels in rabbits. (a) Experimental photograph showing the rabbit, the ophthalmic lens, and the transducer. (b) Fundus photograph showing rabbit retinal vessels (RVs) originating from the optic nerve are confined in the medullary ray regions. (c) Close-up of the RVs in the white rectangle box in (b). (d) MIP of PAM signals of RVs and choroidal vessels (CVs). (e) 3D volumetric rendering of the PAM image (see Visualization 1). (f) 2D orthogonal slices of the PAM image showing RVs and CVs at different depths. (g) OCT image showing RVs, CVs, NFL, and retinal layers, as demonstrated in [35].

Fig. 4
Fig. 4

PAM and OCT dual-modality imaging of choroidal blood vessels in rabbits. (a) Fundus photograph demonstrating the choroidal vessel distribution inferior to the optic nerve. (b) MIP of PAM signals of the CVs. (c) OCT image showing retinal layers, the choroid, and the sclera. GCL: Ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; OLM: outer limiting membrane; MZ: myoid zone; EZ: ellipsoid zone; OS: outer segment; IZ: interdigitation zone; BM, Bruch’s membrane.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α= 20μm 17mm =1.2mrad< α min =1.5mrad,
MPE sp =5.0× 10 7 J/ cm 2 .
MPE total / n total =3.3× 10 2 J/ cm 2 .
MPE rp = n Total 0.25 MPE sp =4.2× 10 7 J/ cm 2 .
E= MPE rp ×π× ( D 2 ) 2 =160nJ.

Metrics