Abstract

Dielectric nanostructures can readily support considerable magnetic field enhancements that offer great potential applications in field enhanced spectroscopies. However, the magnetic fields of dielectric structures are usually distributed within the entire volume, which brings challenge to the further increment of the magnetic field enhancement. Here, we theoretically demonstrate that the magnetic field enhancement in dielectric nanostructures can be boosted through the radiative couplings of magnetic modes. Our concentric structure consists of a hollow disk and a ring. The disk has a magnetic dipole mode. The ring has two magnetic dipole modes that are out of phase. Strong radiative interactions between the modes on the disk and the ring can occur, which result in a net constructive coupling effect. For a lossless material with n = 3.3, a sharp peak can be obtained on the scattering spectrum of the coupled system due to the radiative interactions. The corresponding resonant magnetic field enhancement at the disk center reaches 96 times. This enhancement is about 7 times higher than that of an individual disk. The structure with a lossy material Si is also considered, where radiative couplings and boosted magnetic field can also be obtained. Our research reveals the strong radiative mode couplings in dielectric structures and is important for furthering our understanding on the light-matter interactions at the nanoscale.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement

Yan-Hui Deng, Zhong-Jian Yang, and Jun He
Opt. Express 26(24) 31116-31128 (2018)

Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures

Qian Zhao, Zhong-Jian Yang, and Jun He
Photon. Res. 7(10) 1142-1153 (2019)

Anticrossing double Fano resonances generated in metallic/dielectric hybrid nanostructures using nonradiative anapole modes for enhanced nonlinear optical effects

Wu-Chao Zhai, Tie-Zhu Qiao, Dong-Jin Cai, Wen-Jie Wang, Jing-Dong Chen, Zhi-Hui Chen, and Shao-Ding Liu
Opt. Express 24(24) 27858-27869 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  2. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  3. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  4. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
    [Crossref]
  5. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  6. Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
    [Crossref]
  7. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  8. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  9. W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2(8), e1600901 (2016).
    [Crossref] [PubMed]
  10. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  11. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]
  12. Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
    [Crossref] [PubMed]
  13. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
    [Crossref] [PubMed]
  14. T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
    [Crossref] [PubMed]
  15. X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8(19), 10441–10452 (2016).
    [Crossref] [PubMed]
  16. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
    [Crossref] [PubMed]
  17. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
    [Crossref] [PubMed]
  18. D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
    [Crossref] [PubMed]
  19. D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
    [Crossref]
  20. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
    [Crossref] [PubMed]
  21. P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, “Origin of second-harmonic generation from individual silicon nanowires,” Phys. Rev. B 93(12), 125421 (2016).
    [Crossref]
  22. S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
    [Crossref] [PubMed]
  23. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  24. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  25. M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
    [Crossref]
  26. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  27. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref] [PubMed]
  28. T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
    [Crossref]
  29. W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
    [Crossref] [PubMed]
  30. A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
    [Crossref] [PubMed]
  31. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
    [Crossref] [PubMed]
  32. L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
    [Crossref] [PubMed]
  33. H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
    [Crossref] [PubMed]
  34. U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
    [Crossref]
  35. J. van de Groep, T. Coenen, S. A. Mann, and A. Polman, “Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles,” Optica 3(1), 93–99 (2016).
    [Crossref]
  36. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
    [Crossref] [PubMed]
  37. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref] [PubMed]
  38. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
    [Crossref] [PubMed]
  39. B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
    [Crossref]
  40. Z.-J. Yang, “Fano Interference of Electromagnetic Modes in Subwavelength Dielectric Nanocrosses,” J. Phys. Chem. C 120(38), 21843–21849 (2016).
    [Crossref]
  41. P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
    [Crossref]
  42. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
    [Crossref] [PubMed]
  43. A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015).
    [Crossref] [PubMed]
  44. T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
    [Crossref] [PubMed]
  45. M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
    [Crossref] [PubMed]
  46. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
    [Crossref]
  47. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
    [Crossref]
  48. R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical Magnetism and Plasmonic Fano Resonances in Metal-Insulator-Metal Oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
    [Crossref] [PubMed]
  49. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
    [Crossref] [PubMed]
  50. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
    [Crossref]
  51. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
    [Crossref]
  52. M. A. van de Haar, J. van de Groep, B. J. M. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24(3), 2047–2064 (2016).
    [Crossref] [PubMed]
  53. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref] [PubMed]
  54. Z. Ruan and S. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
    [Crossref] [PubMed]
  55. A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21(9), 10454–10459 (2013).
    [Crossref] [PubMed]
  56. W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
    [Crossref] [PubMed]
  57. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  58. E. D. Palik, Handbook of optical constants of solids (Academic, 1985).

2017 (2)

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

2016 (16)

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

J. van de Groep, T. Coenen, S. A. Mann, and A. Polman, “Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles,” Optica 3(1), 93–99 (2016).
[Crossref]

M. A. van de Haar, J. van de Groep, B. J. M. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24(3), 2047–2064 (2016).
[Crossref] [PubMed]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2(8), e1600901 (2016).
[Crossref] [PubMed]

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref] [PubMed]

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8(19), 10441–10452 (2016).
[Crossref] [PubMed]

P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, “Origin of second-harmonic generation from individual silicon nanowires,” Phys. Rev. B 93(12), 125421 (2016).
[Crossref]

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Z.-J. Yang, “Fano Interference of Electromagnetic Modes in Subwavelength Dielectric Nanocrosses,” J. Phys. Chem. C 120(38), 21843–21849 (2016).
[Crossref]

2015 (13)

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015).
[Crossref] [PubMed]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical Magnetism and Plasmonic Fano Resonances in Metal-Insulator-Metal Oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

2014 (8)

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

2013 (7)

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21(9), 10454–10459 (2013).
[Crossref] [PubMed]

2012 (6)

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

2011 (1)

2010 (1)

Z. Ruan and S. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

2008 (1)

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

2007 (1)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Aieta, F.

Aizpurua, J.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Albella, P.

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Alù, A.

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Ananias, D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Arbouet, A.

P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, “Origin of second-harmonic generation from individual silicon nanowires,” Phys. Rev. B 93(12), 125421 (2016).
[Crossref]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bakker, R. M.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Bakkers, E. P.

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

Baron, T.

P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, “Origin of second-harmonic generation from individual silicon nanowires,” Phys. Rev. B 93(12), 125421 (2016).
[Crossref]

Bebey, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Belov, P. A.

Bidault, S.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Bonod, N.

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8(19), 10441–10452 (2016).
[Crossref] [PubMed]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Brener, I.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Brenny, B. J. M.

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Cao, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

Capasso, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Carlos, L. D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Chantada, L.

Chen, H.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, Y.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Chichkov, B. N.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Chipouline, A.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Chong, K. E.

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

Coenen, T.

Cortés, E.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Devlin, R.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Dodson, C. M.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Ee, H.-S.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Esteban, R.

Evlyukhin, A. B.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Ezhov, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Fan, S.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Fan, W.

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2(8), e1600901 (2016).
[Crossref] [PubMed]

Fang, H.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Fedyanin, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Feng, T.

Filonov, D. S.

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

Fu, L.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

García-Etxarri, A.

Garnett, E. C.

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

Genevet, P.

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Giessen, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Girard, C.

P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, “Origin of second-harmonic generation from individual silicon nanowires,” Phys. Rev. B 93(12), 125421 (2016).
[Crossref]

Gómez-Medina, R.

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Grinblat, G.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Habteyes, T. G.

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

Hartsfield, T.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Hasman, E.

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Haverkort, J. E.

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

Holsteen, A. L.

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

Hopkins, B.

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hu, H.

Huang, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jiang, R.

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

Kaiser, S.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Käll, M.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical Magnetism and Plasmonic Fano Resonances in Metal-Insulator-Metal Oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Kang, J.-H.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

Kasperczyk, M.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Khorasaninejad, M.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kik, P. G.

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

Kivshar, Y.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3(11), 1241–1255 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21(9), 10454–10459 (2013).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

Krasnok, A. E.

Krauss, T. F.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Le, K. Q.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Lei, B.

Li, J.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Li, K.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Li, X.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Liang, Z.

Lin, D.

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Lin, H. Q.

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

Lin, Z.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Liu, H.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Liu, J.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Liu, N.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Liu, P.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Liu, W.

Liu, X.-X.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Liu, Z.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

López, C.

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Mackowski, S.

Maguid, E.

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

Maier, S. A.

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Mann, S. A.

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

J. van de Groep, T. Coenen, S. A. Mann, and A. Polman, “Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles,” Optica 3(1), 93–99 (2016).
[Crossref]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Melik-Gaykazyan, E. V.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Miroshnichenko, A.

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
[Crossref]

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21(9), 10454–10459 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

Mirzaei, A.

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Monticone, F.

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
[Crossref]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Moreno, F.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Neshev, D. N.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Paillard, V.

P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, “Origin of second-harmonic generation from individual silicon nanowires,” Phys. Rev. B 93(12), 125421 (2016).
[Crossref]

Paniagua-Domínguez, R.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Person, S.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Polman, A.

Poyli, M. A.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Reardon, C. P.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Reinhardt, C.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Rolly, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Ruan, Q.

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

Ruan, Z.

Z. Ruan and S. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Sáenz, J. J.

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Scheffold, F.

Schmidt, M. K.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas--a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20(13), 13636–13650 (2012).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

Seo, M.-K.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

Shadrivov, I. V.

Shafiei, F.

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Shcherbakov, M. R.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Shegai, T.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical Magnetism and Plasmonic Fano Resonances in Metal-Insulator-Metal Oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Shibanuma, T.

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref] [PubMed]

Shorokhov, A. S.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Smirnova, D.

Staude, I.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Stellinga, D.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Stout, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Su, R.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Suárez-Lacalle, I.

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
[Crossref]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

van Dam, D.

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

van de Groep, J.

van de Haar, M. A.

van Hoof, N. J.

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

van Veldhoven, P. J.

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

Verre, R.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical Magnetism and Plasmonic Fano Resonances in Metal-Insulator-Metal Oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Wan, W.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Wang, C.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Wang, H.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Wang, J.

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

Wang, X.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Wang, Z.

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2(8), e1600901 (2016).
[Crossref] [PubMed]

Wetzstein, G.

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

Wiecha, P. R.

P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, “Origin of second-harmonic generation from individual silicon nanowires,” Phys. Rev. B 93(12), 125421 (2016).
[Crossref]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Wu, L.

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2(8), e1600901 (2016).
[Crossref] [PubMed]

Xie, Y. M.

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

Xu, Y.

Yan, B.

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2(8), e1600901 (2016).
[Crossref] [PubMed]

Yan, J.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Yang, B.

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

Yang, G.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Yang, Z. J.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical Magnetism and Plasmonic Fano Resonances in Metal-Insulator-Metal Oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Yang, Z.-J.

Z.-J. Yang, “Fano Interference of Electromagnetic Modes in Subwavelength Dielectric Nanocrosses,” J. Phys. Chem. C 120(38), 21843–21849 (2016).
[Crossref]

Yao, B.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Yu, Y.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

Yu, Y. F.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Zambrana-Puyalto, X.

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8(19), 10441–10452 (2016).
[Crossref] [PubMed]

Zhang, J.

Zhang, S.

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Zheng, W.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Zhou, L.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Zhou, Z.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zhu, S. N.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Zia, R.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Zywietz, U.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nanosphere dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

ACS Photonics (4)

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, “Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances,” ACS Photonics 2(6), 724–729 (2015).
[Crossref]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2(7), 913–920 (2015).
[Crossref]

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, “Near-field mapping of optical modes on all-dielectric silicon nanodisks,” ACS Photonics 1(9), 794–798 (2014).
[Crossref]

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient Silicon Metasurfaces for Visible Light,” ACS Photonics 4(3), 544–551 (2017).
[Crossref]

Adv. Mater. (2)

S. Zhang, R. Jiang, Y. M. Xie, Q. Ruan, B. Yang, J. Wang, and H. Q. Lin, “Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20(20), 3859–3865 (2008).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

J. Phys. Chem. C (2)

Z.-J. Yang, “Fano Interference of Electromagnetic Modes in Subwavelength Dielectric Nanocrosses,” J. Phys. Chem. C 120(38), 21843–21849 (2016).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Nano Lett. (8)

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13(8), 3559–3565 (2013).
[Crossref] [PubMed]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref] [PubMed]

Y. Cui, D. van Dam, S. A. Mann, N. J. van Hoof, P. J. van Veldhoven, E. C. Garnett, E. P. Bakkers, and J. E. Haverkort, “Boosting solar cell photovoltage via nanophotonic engineering,” Nano Lett. 16(10), 6467–6471 (2016).
[Crossref] [PubMed]

D. Lin, A. L. Holsteen, E. Maguid, G. Wetzstein, P. G. Kik, E. Hasman, and M. L. Brongersma, “Photonic Multitasking Interleaved Si Nanoantenna Phased Array,” Nano Lett. 16(12), 7671–7676 (2016).
[Crossref] [PubMed]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical Magnetism and Plasmonic Fano Resonances in Metal-Insulator-Metal Oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Nanoscale (4)

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref] [PubMed]

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8(19), 10441–10452 (2016).
[Crossref] [PubMed]

A. Mirzaei and A. E. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7(14), 5963–5968 (2015).
[Crossref] [PubMed]

Nat. Commun. (5)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (3)

Phys. Rev. A (1)

M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93(5), 053837 (2016).
[Crossref]

Phys. Rev. B (4)

P. R. Wiecha, A. Arbouet, C. Girard, T. Baron, and V. Paillard, “Origin of second-harmonic generation from individual silicon nanowires,” Phys. Rev. B 93(12), 125421 (2016).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Phys. Rev. Lett. (2)

Z. Ruan and S. Fan, “Superscattering of Light from Subwavelength Nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114(16), 163903 (2015).
[Crossref] [PubMed]

Sci. Adv. (1)

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2(8), e1600901 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Science (3)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Other (2)

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

E. D. Palik, Handbook of optical constants of solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical responses of individual disk and ring. (a) Scattering spectrum of a hollow nanodisk. The radius and height are 75 and 210 nm, respectively. The diameter of the hole is 10 nm. The refractive index is n = 3.3. The bottom inset shows the schematic of the structure with plane wave excitation. The origin of the coordinate system is placed at the center of the disk. The top inset shows the magnetic field enhancement on the y = 0 plane. The wavelength is λ = 635 nm. The dashed white line shows the edge of the disk. (b) Scattering spectrum of a ring. The inner and outer radius are Rin = 270 and Rout = 450 nm, respectively. The height is 210 nm. The refractive index is n = 3.3. The inset shows the schematic of the structure and the origin of the coordinate system is placed at the center of the ring. (c) Magnetic field enhancements of the ring on the planes of y = 0, z = 55, z = −55 nm. The wavelength is λ = 650 nm. The dashed lines represent the edge of the ring. The arrows show the directions of the magnetic field.
Fig. 2
Fig. 2 Superscattering-like spectral phenomenon induced by radiative couplings of the magnetic modes on the disk and ring. (a) Schematic of the coupled system. The structure is excited by a plane wave with normal incidence plane wave. The origin of coordinate system is placed at the center of the disk. (b) Scattering spectrum of the coupled system. The geometries of the ring and disk are the same as that in Fig. 1. The scattering spectra of the individual disk and ring are also shown for comparison. (c-e) Magnetic field enhancements of the ring on the planes of y = 0, z = 50 and z = −50 nm. The wavelength is λ = 635 nm. The arrows denote the directions of the magnetic field.
Fig. 3
Fig. 3 Boosted magnetic field enhancement. (a) Magnetic field enhancement at the center of the hollow disk in the coupled structure (red). The case for an individual disk (black) is also shown for comparison. (b,c) The magnetic and electric field enhancements of the coupled structure on the plane of y = 0 plane. The wavelength is λ = 635 nm. The dashed lines show the outline of the structures.
Fig. 4
Fig. 4 Designing the coupled system to boost the magnetic field enhancement. (a-c) The magnetic field enhancement at the center of the disk in coupled structure as a function of wavelength and Rout with Rin = 270, 215 and 300 nm. (d) Scattering spectrum of individual rings with Rin = 300 (black), 270 (red) and 215 nm (blue). The corresponding Rout are Rout = 480, 450 and 395 nm, respectively. The case for an individual infinite rod with width 180 nm and height 210 nm is also shown (dashed gray). The inset shows the magnetic field distribution of the infinite rod at λ = 650 nm. (e) The peak magnetic field enhancement at the center of the disk as function of inner radius Rin of a ring. The Rout - Rin is fixed at 180 nm for all the rings.
Fig. 5
Fig. 5 Boosting magnetic field enhancement in a lossy system with Si as the material. (a) The schematic of the coupled system consisting of a disk and a ring. (b) Extinction spectra of the coupled system and individual disk and ring. The radius and height of the disk are 52.5 and 150 nm, respectively. The diameter of the hole in the disk is also 10 nm. The inner and outer radius of the ring are Rin = 250 and Rout = 380 nm, respectively. The height of the ring is 150 nm. (c) The magnetic field enhancement at the center of the disk in the coupled structure (red) and the individual disk (black).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H= μ 0 4π | r | 3 (3( m 1 r ^ )( m 2 r ^ ) m 1 m 2 ) e iω| r |/c ,

Metrics