Abstract

A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches (“DCSWs”) is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling (“flexible waveband”) while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal’s technical feasibility.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Node Architecture and Design of Flexible Waveband Routing Optical Networks

Hiroshi Hasegawa, Suresh Subramaniam, and Ken-ichi Sato
J. Opt. Commun. Netw. 8(10) 734-744 (2016)

Performance evaluation of large-scale multi-stage hetero-granular optical cross-connects

Hai-Chau Le, Hiroshi Hasegawa, and Ken-ichi Sato
Opt. Express 22(3) 3157-3168 (2014)

Hardware Scale and Performance Evaluation of a Compact Subsystem Modular Optical Cross Connect That Adopts Tailored Add/Drop Architecture

Hiroto Ishida, Hiroshi Hasegawa, and Ken-ichi Sato
J. Opt. Commun. Netw. 7(6) 586-596 (2015)

References

  • View by:
  • |
  • |
  • |

  1. https://www.itu.int/rec/T-REC-G.694.1
  2. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [Crossref]
  3. H. Takara, K. Yonenaga, and M. Jinno, “Spectrally-efficient elastic optical path networks toward 1 Tbps era,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OTh3B.3.
    [Crossref]
  4. T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental Demonstration of 448-Gbps+ DMT Transmission over 30-km SMF,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2015), paper M2I.5.
  5. F. Buchali, A. Klekamp, L. Schmalen, and D. Tomislav, “Implementation of 64QAM at 42.66 GBaud Using 1.5 Samples per Symbol DAC and Demonstration of up to 300 km Fiber Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), paper M2A.1.
    [Crossref]
  6. W. Zheng, Y. Jin, W. Sun, W. Guo, and W. Hu, “On the Spectrum-Efficiency of Bandwidth-Variable Optical OFDM Transport Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America 2010), Paper, OWR5.
    [Crossref]
  7. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
    [Crossref]
  8. K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Routing and Spectrum Allocation in OFDM-based Optical Networks with Elastic Bandwidth Allocation,” in Proceedings of GLOBECOM (2010), Paper 9781424456376.
    [Crossref]
  9. T. Takagi, H. Hasegawa, K. Sato, and T. Tanaka, B, Kozicki, Y. Sone, and M. Jinno, “Algorithm for Maximizing Spectrum Efficiency in Elastic Optical Path Networks that Adapt Distance Adaptive Modulation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America 2010), Paper We.8.D.5.
    [Crossref]
  10. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
    [Crossref]
  11. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  12. K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-High Port Count Wavelength Selective Switch Employing Waveguide-Based I/O Frontend”, in Optical Fiber Communication Conference (OFC), paper Tu3A.7, March 2015.
    [Crossref]
  13. K. Harada, K. Shimizu, T. Kudou, and T. Ozeki, “Hierarchical optical path cross-connect systems for large scale WDM networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 1999), pp. 356–358.
    [Crossref]
  14. O. Turkcu and S. Subramaniam, “Optimal waveband switching in optical ring networks,” in Proceedings of INFOCOM (2010), pp. 1–9.
    [Crossref]
  15. O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
    [Crossref]
  16. S. Chandrasekhar, C. R. Doerr, and L. L. Buhl, “Optical networking without guard bands using novel 8-skip-0 banding filters,” IEEE Photonics Technol. Lett. 17(3), 579–581 (2005).
    [Crossref]
  17. S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, and S. Kamei, “Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions,” IEEE/OSA J. Lightwave Technol. 27(1), 30–40 (2009).
    [Crossref]
  18. K. Ishii, H. Hasegawa, K. Sato, S. Kamei, H. Takahashi, and M. Okuno, “Monolithically Integrated Waveband Selective Switch Using Cyclic AWGs,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2008), Paper Mo.4.C.5.
  19. H. Hasegawa, S. Subramaniam, and K. Sato, “Flexible waveband routing optical networks,” in International Conference on Communications, IEEE Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2015), pp. 5198 – 5203.
  20. S. Han, T. J. Seok, N. Quack, B. W. Yoo, and M. C. Wu, “Monolithic 50x50 MEMS Silicon Photonic Switches with Microsecond Response Time,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), Paper, M2K.2.
    [Crossref]
  21. S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Katoh, T. Hino, and K. Fukuchi, “Compact and Low-Loss 8x8 Silicon Photonic Switch Module for Transponder Aggregators in CDC-ROADM Application,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2015), paper M2B.6.
    [Crossref]
  22. T. Ishikawa, H. Hasegawa, S. Subramaniam, and K. Sato, “A Compact OXC Node Architecture That Exploits Dynamic Path Bundling and Routing,” in Proceedings of Optical Network Design and Modeling, IEEE Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2016), Paper S8–3.
  23. T. Ishikawa, M. Niwa, K. Ueda, Y. Mori, H. Hasegawa, S. Subramaniam, K. Sato, and O. Moriwaki, “Hardware Scale Analysis and Prototype Development of Flexible Waveband Routing OXCs,” in Proceedings of Opto-Electronics and Communications Conference/Photonics in Switching, IEEE Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2016), Paper TuA1–4.
  24. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
    [Crossref]
  25. T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OTh3D.1.
    [Crossref]
  26. T. Watanabe, T. Mizuno, Y. Hashizume, and T. Takahashi, “Silica-based PLC 1×N Switch for All Wavelength Bands,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), paper Th1I.5.
    [Crossref]
  27. R. Inkret, A. Kuchar, and B. Mikac, Advanced Infrastructure for Photonic Networks – Extended Final Report of COST266 Action. Zagreb, Croatia: Faculty of Electrical Engineering and Computing, University of Zagreb (2003).
  28. E. Hadjiconstantinou and N. Christofides, “An Efficient Implementation of An Algorithm For Finding K Shortest Simple Paths,” Networks 34(2), 88–101 (1999).
    [Crossref]
  29. T. Sakano, Y. Tsukishima, H. Hasegawa, T. Tsuritani, Y. Hirota, S. Arakawa, and H. Tode, “A study on a Photonic Network Model based on the regional characteristics of Japan,” in Proceeding of Technical Report of IEICE, PN2013–01 (2013), pp. 1–6 (in Japanese)
  30. A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of telecom italia transport networks,” Fiber Integr. Opt. 27(4), 183–193 (2008).
    [Crossref]
  31. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]

2011 (3)

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

2010 (2)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

2009 (2)

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, and S. Kamei, “Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions,” IEEE/OSA J. Lightwave Technol. 27(1), 30–40 (2009).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

2008 (1)

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of telecom italia transport networks,” Fiber Integr. Opt. 27(4), 183–193 (2008).
[Crossref]

2005 (1)

S. Chandrasekhar, C. R. Doerr, and L. L. Buhl, “Optical networking without guard bands using novel 8-skip-0 banding filters,” IEEE Photonics Technol. Lett. 17(3), 579–581 (2005).
[Crossref]

1999 (1)

E. Hadjiconstantinou and N. Christofides, “An Efficient Implementation of An Algorithm For Finding K Shortest Simple Paths,” Networks 34(2), 88–101 (1999).
[Crossref]

Allasia, A.

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of telecom italia transport networks,” Fiber Integr. Opt. 27(4), 183–193 (2008).
[Crossref]

Bosco, G.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Brizi, V.

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of telecom italia transport networks,” Fiber Integr. Opt. 27(4), 183–193 (2008).
[Crossref]

Buhl, L. L.

S. Chandrasekhar, C. R. Doerr, and L. L. Buhl, “Optical networking without guard bands using novel 8-skip-0 banding filters,” IEEE Photonics Technol. Lett. 17(3), 579–581 (2005).
[Crossref]

Carena, A.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Chandrasekhar, S.

S. Chandrasekhar, C. R. Doerr, and L. L. Buhl, “Optical networking without guard bands using novel 8-skip-0 banding filters,” IEEE Photonics Technol. Lett. 17(3), 579–581 (2005).
[Crossref]

Christofides, N.

E. Hadjiconstantinou and N. Christofides, “An Efficient Implementation of An Algorithm For Finding K Shortest Simple Paths,” Networks 34(2), 88–101 (1999).
[Crossref]

Curri, V.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Doerr, C. R.

S. Chandrasekhar, C. R. Doerr, and L. L. Buhl, “Optical networking without guard bands using novel 8-skip-0 banding filters,” IEEE Photonics Technol. Lett. 17(3), 579–581 (2005).
[Crossref]

Forghieri, F.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Hadjiconstantinou, E.

E. Hadjiconstantinou and N. Christofides, “An Efficient Implementation of An Algorithm For Finding K Shortest Simple Paths,” Networks 34(2), 88–101 (1999).
[Crossref]

Hasegawa, H.

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, and S. Kamei, “Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions,” IEEE/OSA J. Lightwave Technol. 27(1), 30–40 (2009).
[Crossref]

Hirano, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Jinno, M.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Kakehashi, S.

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, and S. Kamei, “Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions,” IEEE/OSA J. Lightwave Technol. 27(1), 30–40 (2009).
[Crossref]

Kamei, S.

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, and S. Kamei, “Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions,” IEEE/OSA J. Lightwave Technol. 27(1), 30–40 (2009).
[Crossref]

Kozicki, B.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Moriwaki, O.

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, and S. Kamei, “Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions,” IEEE/OSA J. Lightwave Technol. 27(1), 30–40 (2009).
[Crossref]

Noguchi, K.

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

Ohmori, Y.

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

Okuno, M.

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

Poggiolini, P.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Potenza, M.

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of telecom italia transport networks,” Fiber Integr. Opt. 27(4), 183–193 (2008).
[Crossref]

Sakamoto, T.

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

Sato, K.

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, and S. Kamei, “Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions,” IEEE/OSA J. Lightwave Technol. 27(1), 30–40 (2009).
[Crossref]

Sone, Y.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Subramaniam, S.

O. Turkcu and S. Subramaniam, “Optimal waveband switching in optical ring networks,” in Proceedings of INFOCOM (2010), pp. 1–9.
[Crossref]

Takahashi, H.

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

Takara, H.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tanaka, T.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Turkcu, O.

O. Turkcu and S. Subramaniam, “Optimal waveband switching in optical ring networks,” in Proceedings of INFOCOM (2010), pp. 1–9.
[Crossref]

Watanabe, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Fiber Integr. Opt. (1)

A. Allasia, V. Brizi, and M. Potenza, “Characteristics and trends of telecom italia transport networks,” Fiber Integr. Opt. 27(4), 183–193 (2008).
[Crossref]

IEEE Commun. Mag. (2)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (2)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

S. Chandrasekhar, C. R. Doerr, and L. L. Buhl, “Optical networking without guard bands using novel 8-skip-0 banding filters,” IEEE Photonics Technol. Lett. 17(3), 579–581 (2005).
[Crossref]

IEEE/OSA J. Lightwave Technol. (4)

S. Kakehashi, H. Hasegawa, K. Sato, O. Moriwaki, and S. Kamei, “Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing Functions,” IEEE/OSA J. Lightwave Technol. 27(1), 30–40 (2009).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

O. Moriwaki, K. Noguchi, H. Takahashi, T. Sakamoto, K. Sato, H. Hasegawa, M. Okuno, and Y. Ohmori, “Development of terabit-scale compact hierarchical optical cross-connect system using planar device integration,” IEEE/OSA J. Lightwave Technol. 29(4), 449–455 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” IEEE/OSA J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

Networks (1)

E. Hadjiconstantinou and N. Christofides, “An Efficient Implementation of An Algorithm For Finding K Shortest Simple Paths,” Networks 34(2), 88–101 (1999).
[Crossref]

Other (21)

T. Sakano, Y. Tsukishima, H. Hasegawa, T. Tsuritani, Y. Hirota, S. Arakawa, and H. Tode, “A study on a Photonic Network Model based on the regional characteristics of Japan,” in Proceeding of Technical Report of IEICE, PN2013–01 (2013), pp. 1–6 (in Japanese)

https://www.itu.int/rec/T-REC-G.694.1

K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Routing and Spectrum Allocation in OFDM-based Optical Networks with Elastic Bandwidth Allocation,” in Proceedings of GLOBECOM (2010), Paper 9781424456376.
[Crossref]

T. Takagi, H. Hasegawa, K. Sato, and T. Tanaka, B, Kozicki, Y. Sone, and M. Jinno, “Algorithm for Maximizing Spectrum Efficiency in Elastic Optical Path Networks that Adapt Distance Adaptive Modulation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America 2010), Paper We.8.D.5.
[Crossref]

K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-High Port Count Wavelength Selective Switch Employing Waveguide-Based I/O Frontend”, in Optical Fiber Communication Conference (OFC), paper Tu3A.7, March 2015.
[Crossref]

K. Harada, K. Shimizu, T. Kudou, and T. Ozeki, “Hierarchical optical path cross-connect systems for large scale WDM networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 1999), pp. 356–358.
[Crossref]

O. Turkcu and S. Subramaniam, “Optimal waveband switching in optical ring networks,” in Proceedings of INFOCOM (2010), pp. 1–9.
[Crossref]

H. Takara, K. Yonenaga, and M. Jinno, “Spectrally-efficient elastic optical path networks toward 1 Tbps era,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OTh3B.3.
[Crossref]

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental Demonstration of 448-Gbps+ DMT Transmission over 30-km SMF,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2015), paper M2I.5.

F. Buchali, A. Klekamp, L. Schmalen, and D. Tomislav, “Implementation of 64QAM at 42.66 GBaud Using 1.5 Samples per Symbol DAC and Demonstration of up to 300 km Fiber Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), paper M2A.1.
[Crossref]

W. Zheng, Y. Jin, W. Sun, W. Guo, and W. Hu, “On the Spectrum-Efficiency of Bandwidth-Variable Optical OFDM Transport Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America 2010), Paper, OWR5.
[Crossref]

K. Ishii, H. Hasegawa, K. Sato, S. Kamei, H. Takahashi, and M. Okuno, “Monolithically Integrated Waveband Selective Switch Using Cyclic AWGs,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2008), Paper Mo.4.C.5.

H. Hasegawa, S. Subramaniam, and K. Sato, “Flexible waveband routing optical networks,” in International Conference on Communications, IEEE Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2015), pp. 5198 – 5203.

S. Han, T. J. Seok, N. Quack, B. W. Yoo, and M. C. Wu, “Monolithic 50x50 MEMS Silicon Photonic Switches with Microsecond Response Time,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), Paper, M2K.2.
[Crossref]

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Katoh, T. Hino, and K. Fukuchi, “Compact and Low-Loss 8x8 Silicon Photonic Switch Module for Transponder Aggregators in CDC-ROADM Application,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2015), paper M2B.6.
[Crossref]

T. Ishikawa, H. Hasegawa, S. Subramaniam, and K. Sato, “A Compact OXC Node Architecture That Exploits Dynamic Path Bundling and Routing,” in Proceedings of Optical Network Design and Modeling, IEEE Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2016), Paper S8–3.

T. Ishikawa, M. Niwa, K. Ueda, Y. Mori, H. Hasegawa, S. Subramaniam, K. Sato, and O. Moriwaki, “Hardware Scale Analysis and Prototype Development of Flexible Waveband Routing OXCs,” in Proceedings of Opto-Electronics and Communications Conference/Photonics in Switching, IEEE Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2016), Paper TuA1–4.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OTh3D.1.
[Crossref]

T. Watanabe, T. Mizuno, Y. Hashizume, and T. Takahashi, “Silica-based PLC 1×N Switch for All Wavelength Bands,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), paper Th1I.5.
[Crossref]

R. Inkret, A. Kuchar, and B. Mikac, Advanced Infrastructure for Photonic Networks – Extended Final Report of COST266 Action. Zagreb, Croatia: Faculty of Electrical Engineering and Computing, University of Zagreb (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

WSS based route and select OXC node architecture.

Fig. 2
Fig. 2

OXC node architecture for flexible waveband routing in [19].

Fig. 3
Fig. 3

Collision between flexible wavebands.

Fig. 4
Fig. 4

Relationship between fiber, flexible waveband, and elastic optical paths.

Fig. 5
Fig. 5

Redundancy in path/waveband routing with OXC architecture in [18].

Fig. 6
Fig. 6

Proposed OXC architecture with small DCSWs arrayed in parallel.

Fig. 7
Fig. 7

Blocking ratio variation for split switches with optimized interconnection to WSSs on a 5x5 mesh network.

Fig. 8
Fig. 8

Flowchart of proposed design algorithm.

Fig. 9
Fig. 9

Additional EDFAs for conventional and proposed OXCs.

Fig. 10
Fig. 10

Number of WSSs per OXC versus OXC node size.

Fig. 11
Fig. 11

Number of EDFAs per OXC versus OXC node size.

Fig. 12
Fig. 12

Normalized number of fibers relative to conventional networks.

Fig. 13
Fig. 13

Normalized number of WSSs relative to conventional networks with 1x9 WSSs.

Fig. 14
Fig. 14

Normalized number of WSSs relative to conventional networks with 1x20 WSSs.

Fig. 15
Fig. 15

The impact of distribution variation of each path request capacity.

Fig. 16
Fig. 16

Experimental setup.

Fig. 17
Fig. 17

5-arrayed 3x3 DCSW PLC chip.

Fig. 18
Fig. 18

Bit-error ratio versus OSNR in 0.1nm.

Fig. 19
Fig. 19

OSNR penalty versus the number of nodes traversed (BER = 10-2).

Tables (1)

Tables Icon

Table 1 Network topologies and their characteristics.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f(r,S):=d(r)+αWS S new (r,S)+βfibe r new (r)

Metrics