Abstract

Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier

Bo Lin, Swee Chuan Tjin, Han Zhang, Dingyuan Tang, Jianzhong Hao, Bo Dong, and Sheng Liang
Appl. Opt. 49(36) 6855-6860 (2010)

Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement

Song Gao, Liang Zhang, Yanping Xu, Ping Lu, Liang Chen, and Xiaoyi Bao
Opt. Express 24(25) 28353-28360 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
    [Crossref]
  2. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photonics Technol. Lett. 8(11), 1459–1461 (1996).
    [Crossref]
  3. A. Bellemare, M. Karasek, M. Rochette, S. LRochelle, and M. Tetu, “Room-temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
    [Crossref]
  4. S. Yamashita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2001).
    [Crossref]
  5. H. Chen, “Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier,” Opt. Lett. 30(6), 619–621 (2005).
    [Crossref] [PubMed]
  6. J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technol. Lett. 16(4), 1020–1022 (2004).
    [Crossref]
  7. S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
    [Crossref] [PubMed]
  8. L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 16(2), 410–412 (2004).
    [Crossref]
  9. S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
    [Crossref]
  10. Y. Matsui, M. D. Pelusi, S. Arahira, and Y. Ogawa, “Beat frequency generation up to 3.4 THz from simultaneous two-mode lasing operation of sampled-grating DBR laser,” Electron. Lett. 35(6), 472–474 (1999).
    [Crossref]
  11. S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
    [Crossref]
  12. A. J. Ruggiero, M. W. Bowers, and R. A. Young, “Mini-AM DIAL System,” in Laser and Electro-Optics 1999, Summary of Papers (Optical Society of America, 1999), paper CFE6.
  13. Y.-G. Han, C. -S Kim, J. U. Kand, U. -C Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
    [Crossref]
  14. X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14(8), 3288–3293 (2006).
    [Crossref] [PubMed]
  15. D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
    [Crossref]
  16. N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
    [Crossref] [PubMed]
  17. X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
    [Crossref]
  18. M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Opt. Express 20(21), 23367–23373 (2012).
    [Crossref] [PubMed]
  19. S. Pan and J. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
    [Crossref] [PubMed]
  20. X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
    [Crossref]
  21. M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
    [Crossref]
  22. V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Fiber-based multiple-beam reflection interferometer for single-longitudinal-mode generation in fiber laser based on semiconductor optical amplifier,” Laser Phys. Lett. 14(2), 025103 (2017).
    [Crossref]
  23. V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Multiple-beam reflection interferometer formed in a single-mode fiber for applications in fiber lasers,” Opt. Express 24(5), 4512–4518 (2016).
    [Crossref]
  24. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
  25. A. A. Fotiadi, “Random lasers: an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
    [Crossref]
  26. M. Gagné and R. Kashyap, “Random fiber Bragg grating Raman fiber laser,” Opt. Lett. 39(9), 2755–2758 (2014).
    [Crossref] [PubMed]
  27. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
    [Crossref] [PubMed]
  28. Y. Xu, D. Xiang, Z. Ou, P. Lu, and X. Bao, “Random Fabry-Perot resonator-based sub-kHz Brillouin fiber laser to improve spectral resolution in linewidth measurement,” Opt. Lett. 40(9), 1920–1923 (2015).
    [Crossref] [PubMed]
  29. L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Linearly polarized low-noise Brillouin random fiber laser,” Opt. Lett. 42(4), 739–742 (2017).
    [Crossref] [PubMed]
  30. T. Zhu, X. Bao, and L. Chen, “A single longitudinal mode tunable fiber ring laser based on stimulated Rayleigh scattering in a non-uniform optical fiber,” J. Lightwave Technol. 29(12), 1802–1807 (2011).
    [Crossref]
  31. M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38(11), 1866–1868 (2013).
    [Crossref] [PubMed]
  32. Y. Li, P. Lu, X. Bao, and Z. Ou, “Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise,” Opt. Lett. 39(8), 2294–2297 (2014).
    [Crossref] [PubMed]
  33. Y. Li, P. Lu, F. Baset, Z. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
    [Crossref]
  34. L. Zhang, C. Wang, Z. Li, Y. Xu, B. Saxena, S. Gao, L. Chen, and X. Bao, “High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity,” Opt. Express 25(10), 11306–11314 (2017).
    [Crossref]
  35. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998).
    [Crossref] [PubMed]
  36. T. Zhu, F. Chen, S. Huang, and X. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
    [Crossref]
  37. T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
    [Crossref]
  38. G. Yin, B. Saxena, and X. Bao, “Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber,” Opt. Express 19(27), 25981–25989 (2011).
    [Crossref] [PubMed]
  39. S. Gao, L. Zhang, Y. Xu, P. Lu, L. Chen, and X. Bao, “Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement,” Opt. Express 24(25), 28353–28360 (2016).
    [Crossref] [PubMed]
  40. Y. Xu, S. Gao, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Low-noise Brillouin random fiber laser with a random grating-based resonator,” Opt. Lett. 41(14), 3197–3200 (2016).
    [Crossref] [PubMed]
  41. M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21(22), 27155–27168 (2013).
    [Crossref] [PubMed]
  42. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
    [Crossref] [PubMed]
  43. Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21(24), 29358–29363 (2013).
    [Crossref] [PubMed]
  44. S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21(14), 16466–16472 (2013).
    [Crossref] [PubMed]
  45. C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20(5), 902405 (2014).
  46. S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
    [Crossref] [PubMed]
  47. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
    [Crossref] [PubMed]
  48. S. Sugavanam, Z. Yan, V. Kamynin, A. S. Kurkov, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22(3), 2839–2844 (2014).
    [Crossref] [PubMed]
  49. T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
    [Crossref] [PubMed]
  50. M.-J. Li, S. Li, and D. A. Nolan, “Nonlinear Fibers for Signal Processing Using Optical Kerr Effects,” J. Lightwave Technol. 23(11), 3606–3614 (2005).
    [Crossref]

2017 (3)

2016 (5)

2015 (1)

2014 (6)

Y. Li, P. Lu, X. Bao, and Z. Ou, “Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise,” Opt. Lett. 39(8), 2294–2297 (2014).
[Crossref] [PubMed]

Y. Li, P. Lu, F. Baset, Z. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

M. Gagné and R. Kashyap, “Random fiber Bragg grating Raman fiber laser,” Opt. Lett. 39(9), 2755–2758 (2014).
[Crossref] [PubMed]

S. Sugavanam, Z. Yan, V. Kamynin, A. S. Kurkov, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22(3), 2839–2844 (2014).
[Crossref] [PubMed]

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20(5), 902405 (2014).

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

2013 (5)

2012 (1)

2011 (3)

2010 (4)

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).

A. A. Fotiadi, “Random lasers: an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (1)

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

2006 (2)

X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14(8), 3288–3293 (2006).
[Crossref] [PubMed]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

2005 (4)

2004 (2)

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technol. Lett. 16(4), 1020–1022 (2004).
[Crossref]

L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 16(2), 410–412 (2004).
[Crossref]

2003 (1)

Y.-G. Han, C. -S Kim, J. U. Kand, U. -C Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
[Crossref]

2001 (1)

S. Yamashita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2001).
[Crossref]

2000 (1)

1999 (1)

Y. Matsui, M. D. Pelusi, S. Arahira, and Y. Ogawa, “Beat frequency generation up to 3.4 THz from simultaneous two-mode lasing operation of sampled-grating DBR laser,” Electron. Lett. 35(6), 472–474 (1999).
[Crossref]

1998 (1)

1996 (3)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photonics Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[Crossref]

1992 (1)

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[Crossref]

Alcon-Camas, M.

Alshehri, A.

Y. Li, P. Lu, F. Baset, Z. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Ania-Castanon, J. D.

Ania-Castañón, J. D.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).

Arahira, S.

Y. Matsui, M. D. Pelusi, S. Arahira, and Y. Ogawa, “Beat frequency generation up to 3.4 THz from simultaneous two-mode lasing operation of sampled-grating DBR laser,” Electron. Lett. 35(6), 472–474 (1999).
[Crossref]

Baba, T.

S. Yamashita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2001).
[Crossref]

Babin, S. A.

V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Fiber-based multiple-beam reflection interferometer for single-longitudinal-mode generation in fiber laser based on semiconductor optical amplifier,” Laser Phys. Lett. 14(2), 025103 (2017).
[Crossref]

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref] [PubMed]

V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Multiple-beam reflection interferometer formed in a single-mode fiber for applications in fiber lasers,” Opt. Express 24(5), 4512–4518 (2016).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).

Bao, X.

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Linearly polarized low-noise Brillouin random fiber laser,” Opt. Lett. 42(4), 739–742 (2017).
[Crossref] [PubMed]

L. Zhang, C. Wang, Z. Li, Y. Xu, B. Saxena, S. Gao, L. Chen, and X. Bao, “High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity,” Opt. Express 25(10), 11306–11314 (2017).
[Crossref]

S. Gao, L. Zhang, Y. Xu, P. Lu, L. Chen, and X. Bao, “Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement,” Opt. Express 24(25), 28353–28360 (2016).
[Crossref] [PubMed]

Y. Xu, S. Gao, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Low-noise Brillouin random fiber laser with a random grating-based resonator,” Opt. Lett. 41(14), 3197–3200 (2016).
[Crossref] [PubMed]

Y. Xu, D. Xiang, Z. Ou, P. Lu, and X. Bao, “Random Fabry-Perot resonator-based sub-kHz Brillouin fiber laser to improve spectral resolution in linewidth measurement,” Opt. Lett. 40(9), 1920–1923 (2015).
[Crossref] [PubMed]

Y. Li, P. Lu, X. Bao, and Z. Ou, “Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise,” Opt. Lett. 39(8), 2294–2297 (2014).
[Crossref] [PubMed]

Y. Li, P. Lu, F. Baset, Z. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

T. Zhu, F. Chen, S. Huang, and X. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38(11), 1866–1868 (2013).
[Crossref] [PubMed]

M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21(22), 27155–27168 (2013).
[Crossref] [PubMed]

G. Yin, B. Saxena, and X. Bao, “Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber,” Opt. Express 19(27), 25981–25989 (2011).
[Crossref] [PubMed]

T. Zhu, X. Bao, and L. Chen, “A single longitudinal mode tunable fiber ring laser based on stimulated Rayleigh scattering in a non-uniform optical fiber,” J. Lightwave Technol. 29(12), 1802–1807 (2011).
[Crossref]

Baset, F.

Y. Li, P. Lu, F. Baset, Z. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Bellemare, A.

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Bhardwaj, V. R.

Y. Li, P. Lu, F. Baset, Z. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Canales, I.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Chan, C. C.

Chen, F.

T. Zhu, F. Chen, S. Huang, and X. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

Chen, H.

Chen, L.

Chen, L. R.

L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 16(2), 410–412 (2004).
[Crossref]

Chen, X.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[Crossref]

Chiang, K.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Chung, Y.

Y.-G. Han, C. -S Kim, J. U. Kand, U. -C Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
[Crossref]

Churkin, D. V.

Deng, M.

Deng, Z.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Dianov, E. M.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[Crossref]

Dong, X.

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20(5), 902405 (2014).

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14(8), 3288–3293 (2006).
[Crossref] [PubMed]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[Crossref] [PubMed]

Dorsinville, R.

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

El-Taher, A. E.

Fan, M.

Fern’andez-Vallejo, M.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Fotiadi, A. A.

Gagné, M.

Gao, S.

Gong, Y.

Han, Y.-G.

Y.-G. Han, C. -S Kim, J. U. Kand, U. -C Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
[Crossref]

Harper, P.

Hossain, A.

Hotate, K.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[Crossref]

Huang, C.

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20(5), 902405 (2014).

Huang, S.

T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
[Crossref] [PubMed]

T. Zhu, F. Chen, S. Huang, and X. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

Huang, S. H.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Huang, W.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Ibsen, M.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Kablukov, S. I.

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).

Kamynin, V.

Kand, J. U.

Y.-G. Han, C. -S Kim, J. U. Kand, U. -C Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
[Crossref]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).

Karasek, M.

Kashyap, R.

Kim, C. -S

Y.-G. Han, C. -S Kim, J. U. Kand, U. -C Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
[Crossref]

Kiyan, R. V.

Kurkov, A. S.

L’opez-Higuera, J. M.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Li, M.-J.

Li, S.

Li, X.

Li, Y.

Li, Z.

Liu, D.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[Crossref] [PubMed]

Liu, J.

T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
[Crossref] [PubMed]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technol. Lett. 16(4), 1020–1022 (2004).
[Crossref]

Liu, M.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Lopez-Amo, M.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Lou, C.

LRochelle, S.

Lu, P.

Lu, Y.

Madamopoulos, N.

Mamyshev, P. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[Crossref]

Matsui, Y.

Y. Matsui, M. D. Pelusi, S. Arahira, and Y. Ogawa, “Beat frequency generation up to 3.4 THz from simultaneous two-mode lasing operation of sampled-grating DBR laser,” Electron. Lett. 35(6), 472–474 (1999).
[Crossref]

Mihailov, S.

Ngo, N. Q.

Nolan, D. A.

Ogawa, Y.

Y. Matsui, M. D. Pelusi, S. Arahira, and Y. Ogawa, “Beat frequency generation up to 3.4 THz from simultaneous two-mode lasing operation of sampled-grating DBR laser,” Electron. Lett. 35(6), 472–474 (1999).
[Crossref]

Ou, Z.

Paek, U. -C

Y.-G. Han, C. -S Kim, J. U. Kand, U. -C Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
[Crossref]

Pan, S.

Pang, M.

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photonics Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

Pelusi, M. D.

Y. Matsui, M. D. Pelusi, S. Arahira, and Y. Ogawa, “Beat frequency generation up to 3.4 THz from simultaneous two-mode lasing operation of sampled-grating DBR laser,” Electron. Lett. 35(6), 472–474 (1999).
[Crossref]

Perez-Herrera, R. A.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Podivilov, E. V.

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).

Qin, Z.

Quintela, M. A.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Rao, Y.

Razani, M.

Rochette, M.

Saxena, B.

Shi, L.

Shi, L. L.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Shu, X.

Shum, P.

Shum, P. P.

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20(5), 902405 (2014).

Simonov, V. A.

V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Fiber-based multiple-beam reflection interferometer for single-longitudinal-mode generation in fiber laser based on semiconductor optical amplifier,” Laser Phys. Lett. 14(2), 025103 (2017).
[Crossref]

V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Multiple-beam reflection interferometer formed in a single-mode fiber for applications in fiber lasers,” Opt. Express 24(5), 4512–4518 (2016).
[Crossref]

Song, J.

Y. Li, P. Lu, F. Baset, Z. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Sugavanam, S.

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Tarasov, N.

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[Crossref]

Terentyev, V. S.

V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Fiber-based multiple-beam reflection interferometer for single-longitudinal-mode generation in fiber laser based on semiconductor optical amplifier,” Laser Phys. Lett. 14(2), 025103 (2017).
[Crossref]

V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Multiple-beam reflection interferometer formed in a single-mode fiber for applications in fiber lasers,” Opt. Express 24(5), 4512–4518 (2016).
[Crossref]

Tetu, M.

Tjin, S. C.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[Crossref] [PubMed]

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

Turitsyn, S. K.

Ummy, M. A.

Wang, C.

Wang, Z.

Wu, H.

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photonics Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

Xiang, D.

Xu, Y.

Yamashita, S.

S. Yamashita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2001).
[Crossref]

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[Crossref]

Yan, Z.

Yao, J.

S. Pan and J. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
[Crossref] [PubMed]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technol. Lett. 16(4), 1020–1022 (2004).
[Crossref]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technol. Lett. 16(4), 1020–1022 (2004).
[Crossref]

Yeap, T. H.

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technol. Lett. 16(4), 1020–1022 (2004).
[Crossref]

Yin, G.

Zeng, F.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Zhang, B.

Zhang, L.

Zhang, N.

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20(5), 902405 (2014).

Zhang, S.

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20(5), 902405 (2014).

Zhao, X.

Zhu, T.

T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
[Crossref] [PubMed]

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

T. Zhu, F. Chen, S. Huang, and X. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

T. Zhu, X. Bao, and L. Chen, “A single longitudinal mode tunable fiber ring laser based on stimulated Rayleigh scattering in a non-uniform optical fiber,” J. Lightwave Technol. 29(12), 1802–1807 (2011).
[Crossref]

Zlobina, E. A.

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Li, P. Lu, F. Baset, Z. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Chin. Sci. Bull. (1)

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Electron. Lett. (4)

S. Yamashita and T. Baba, “Spacing-tunable multiwavelength fibre laser,” Electron. Lett. 37(16), 1015–1017 (2001).
[Crossref]

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[Crossref]

Y. Matsui, M. D. Pelusi, S. Arahira, and Y. Ogawa, “Beat frequency generation up to 3.4 THz from simultaneous two-mode lasing operation of sampled-grating DBR laser,” Electron. Lett. 35(6), 472–474 (1999).
[Crossref]

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20(5), 902405 (2014).

IEEE Photonics Technol. Lett. (8)

L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 16(2), 410–412 (2004).
[Crossref]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technol. Lett. 8(1), 60–62 (1996).
[Crossref]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photonics Technol. Lett. 8(11), 1459–1461 (1996).
[Crossref]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technol. Lett. 16(4), 1020–1022 (2004).
[Crossref]

Y.-G. Han, C. -S Kim, J. U. Kand, U. -C Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
[Crossref]

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fern’andez-Vallejo, M. Lopez-Amo, and J. M. L’opez-Higuera, “Stabilization of dualwavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[Crossref]

J. Lightwave Technol. (3)

Laser Phys. Lett. (2)

T. Zhu, F. Chen, S. Huang, and X. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Fiber-based multiple-beam reflection interferometer for single-longitudinal-mode generation in fiber laser based on semiconductor optical amplifier,” Laser Phys. Lett. 14(2), 025103 (2017).
[Crossref]

Nat. Photonics (2)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).

A. A. Fotiadi, “Random lasers: an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[Crossref]

Opt. Express (13)

M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
[Crossref] [PubMed]

V. S. Terentyev, V. A. Simonov, and S. A. Babin, “Multiple-beam reflection interferometer formed in a single-mode fiber for applications in fiber lasers,” Opt. Express 24(5), 4512–4518 (2016).
[Crossref]

L. Zhang, C. Wang, Z. Li, Y. Xu, B. Saxena, S. Gao, L. Chen, and X. Bao, “High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity,” Opt. Express 25(10), 11306–11314 (2017).
[Crossref]

G. Yin, B. Saxena, and X. Bao, “Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber,” Opt. Express 19(27), 25981–25989 (2011).
[Crossref] [PubMed]

S. Gao, L. Zhang, Y. Xu, P. Lu, L. Chen, and X. Bao, “Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement,” Opt. Express 24(25), 28353–28360 (2016).
[Crossref] [PubMed]

M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Opt. Express 20(21), 23367–23373 (2012).
[Crossref] [PubMed]

S. Pan and J. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
[Crossref] [PubMed]

X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14(8), 3288–3293 (2006).
[Crossref] [PubMed]

M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21(22), 27155–27168 (2013).
[Crossref] [PubMed]

Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21(24), 29358–29363 (2013).
[Crossref] [PubMed]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21(14), 16466–16472 (2013).
[Crossref] [PubMed]

S. Sugavanam, Z. Yan, V. Kamynin, A. S. Kurkov, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22(3), 2839–2844 (2014).
[Crossref] [PubMed]

T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
[Crossref] [PubMed]

Opt. Lett. (12)

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[Crossref] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[Crossref] [PubMed]

S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
[Crossref] [PubMed]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[Crossref] [PubMed]

H. Chen, “Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier,” Opt. Lett. 30(6), 619–621 (2005).
[Crossref] [PubMed]

Y. Xu, S. Gao, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Low-noise Brillouin random fiber laser with a random grating-based resonator,” Opt. Lett. 41(14), 3197–3200 (2016).
[Crossref] [PubMed]

A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998).
[Crossref] [PubMed]

M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38(11), 1866–1868 (2013).
[Crossref] [PubMed]

Y. Li, P. Lu, X. Bao, and Z. Ou, “Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise,” Opt. Lett. 39(8), 2294–2297 (2014).
[Crossref] [PubMed]

Y. Xu, D. Xiang, Z. Ou, P. Lu, and X. Bao, “Random Fabry-Perot resonator-based sub-kHz Brillouin fiber laser to improve spectral resolution in linewidth measurement,” Opt. Lett. 40(9), 1920–1923 (2015).
[Crossref] [PubMed]

L. Zhang, Y. Xu, S. Gao, B. Saxena, L. Chen, and X. Bao, “Linearly polarized low-noise Brillouin random fiber laser,” Opt. Lett. 42(4), 739–742 (2017).
[Crossref] [PubMed]

M. Gagné and R. Kashyap, “Random fiber Bragg grating Raman fiber laser,” Opt. Lett. 39(9), 2755–2758 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

S. A. Babin, E. A. Zlobina, S. I. Kablukov, and E. V. Podivilov, “High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth,” Sci. Rep. 6(1), 22625 (2016).
[Crossref] [PubMed]

Other (1)

A. J. Ruggiero, M. W. Bowers, and R. A. Young, “Mini-AM DIAL System,” in Laser and Electro-Optics 1999, Summary of Papers (Optical Society of America, 1999), paper CFE6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the SOA based dual-wavelength random fiber laser with (A) output power monitoring; (B) optical spectrum monitoring; (C) delayed self-heterodyne (DSH) method for linewidth measurement.
Fig. 2
Fig. 2 Simulated interference patterns (blue) and corresponding spectral envelopes (red) of the proposed random fiber laser in the lasing build-up process.
Fig. 3
Fig. 3 Laser output power (a) and spectra (b) as a function of the driven current of SOA 2.
Fig. 4
Fig. 4 (a) Stability of the two lasing wavelengths of the SOA-based dual-wavelength random fiber laser; (b) comparison of lasing power stability between SOA- and EDF-based dual-wavelength random fiber lasers.
Fig. 5
Fig. 5 Radio frequency spectra of linewidth measurement using the DSH technique for (a) lasing line 1 at 1541.892nm and (b) lasing line 2 at 1544.948nm. Inset: radio frequency spectra with a span of 10MHz for both lasing lines.
Fig. 6
Fig. 6 RIN comparison between the SOA-based and EDF-based dual-wavelength random fiber lasers.
Fig. 7
Fig. 7 Frequency noise comparison between the SOA-based and EDF-based dual-wavelength random fiber lasers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E out = m=1 M E ASE u=1 m exp(αLi 2πυnL c ) k=1 N(u) G u,k A u,k exp(2α z u,k i 4πυn z u,k c ) ,

Metrics