Abstract

We demonstrate a compact eccentric long period grating with enhanced sensitivity in low refractive index region. With a period designed at 15 µm for coupling light to high order cladding modes, the grating is more sensitive to surrounding refractive index in low refractive index region. The intrinsically low coupling coefficients for those high order cladding modes are significantly improved with the eccentric localized inscription induced by the femtosecond laser. The fabricated grating is compact with a length of 4.05 mm, and exhibits an average sensitivity of ~505 nm/RIU in low refractive index region (1.3328-1.3544). The proposed principle can also work in other refractive index region with a proper choice of the resonant cladding modes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Small-period long-period fiber grating with improved refractive index sensitivity and dual-parameter sensing ability

Fangcheng Shen, Changle Wang, Zhongyuan Sun, Kaiming Zhou, Lin Zhang, and Xuewen Shu
Opt. Lett. 42(2) 199-202 (2017)

Spectral characteristics and thermal evolution of long-period gratings in photonic crystal fibers fabricated with a near-IR radiation femtosecond laser using point-by-point inscription

Thomas Allsop, Kyriacos Kalli, Kaiming Zhou, Graham N. Smith, Michael Komodromos, Jovana Petrovic, David J. Webb, and Ian Bennion
J. Opt. Soc. Am. B 28(9) 2105-2114 (2011)

Long period fiber grating in two-core hollow eccentric fiber

Tingting Yuan, Xing Zhong, Chunying Guan, Jianan Fu, Jing Yang, Jinhui Shi, and Libo Yuan
Opt. Express 23(26) 33378-33385 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  2. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), 49–61 (2003).
    [Crossref]
  3. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction,” J. Lightwave Technol. 16(9), 1606–1612 (1998).
    [Crossref]
  4. X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  5. R. Y. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt. 53(21), 4669–4674 (2014).
    [Crossref] [PubMed]
  6. R. M. Carter, R. R. J. Maier, P. Biswas, N. Basumallick, S. Bandyopadhyay, B. J. S. Jones, S. McCulloch, and J. S. Barton, “Experimental Difficulties With LPG Sensors Operating Close to the Phase Turning Points,” J. Lightwave Technol. 34(17), 3999–4004 (2016).
    [Crossref]
  7. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
    [Crossref] [PubMed]
  8. I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
    [Crossref] [PubMed]
  9. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
    [Crossref] [PubMed]
  10. F. Zou, Y. Liu, C. Deng, Y. Dong, S. Zhu, and T. Wang, “Refractive index sensitivity of nano-film coated long-period fiber gratings,” Opt. Express 23(2), 1114–1124 (2015).
    [Crossref] [PubMed]
  11. B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
    [Crossref] [PubMed]
  12. K. Chiang, Y. Liu, M. Ng, and X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
    [Crossref]
  13. K. W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29(8), 812–814 (2004).
    [Crossref] [PubMed]
  14. A. Iadicicco, S. Campopiano, M. Giordano, and A. Cusano, “Spectral behavior in thinned long period gratings: effects of fiber diameter on refractive index sensitivity,” Appl. Opt. 46(28), 6945–6952 (2007).
    [Crossref] [PubMed]
  15. T. Allsop, F. Floreani, K. P. Jedrzejewski, P. V. S. Marques, R. Romero, D. J. Webb, and I. Bennion, “Spectral Characteristics of Tapered LPG Device as a Sensing Element for Refractive Index and Temperature,” J. Lightwave Technol. 24(2), 870–878 (2006).
    [Crossref]
  16. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
    [Crossref] [PubMed]
  17. P. Fan, L. P. Sun, Z. Yu, J. Li, C. Wu, and B. O. Guan, “Higher-order diffraction of long-period microfiber gratings realized by arc discharge method,” Opt. Express 24(22), 25380–25388 (2016).
    [Crossref] [PubMed]
  18. J. Yang, L. Yang, C. Q. Xu, C. Xu, W. Huang, and Y. Li, “Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity,” Appl. Opt. 45(24), 6142–6147 (2006).
    [Crossref] [PubMed]
  19. P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
    [Crossref] [PubMed]
  20. I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
    [Crossref] [PubMed]
  21. M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition,” Opt. Express 24(11), 11897–11904 (2016).
    [Crossref] [PubMed]
  22. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  23. T. Guo, F. Liu, B. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
    [Crossref]
  24. T. Erdogan, “Cladding-mode resonances in short- and long- period fibre grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  25. S. Chaubey, S. Kher, J. Kishore, and S. M. Oak, “CO2 laser-inscribed low-cost, shortest-period long period fibre grating in B-Ge co-doped fibre for high-sensitivity strain measurement,” Pramana 82(2), 373–377 (2014).
    [Crossref]
  26. M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits,” Meas. Sci. Technol. 22(1), 207–209 (2011).
    [Crossref]
  27. Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25(4), 3336–3346 (2017).
    [Crossref] [PubMed]
  28. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
    [Crossref] [PubMed]
  29. J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings II: complete vectorial analysis,” Opt. Express 20(19), 21434–21449 (2012).
    [Crossref] [PubMed]
  30. K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett. 39(24), 6887–6890 (2014).
    [Crossref] [PubMed]
  31. H. Chikh-Bled, K. Chah, Á. González-Vila, B. Lasri, and C. Caucheteur, “Behavior of femtosecond laser-induced eccentric fiber Bragg gratings at very high temperatures,” Opt. Lett. 41(17), 4048–4051 (2016).
    [Crossref] [PubMed]
  32. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
    [Crossref] [PubMed]
  33. G. Rego, O. V. Ivanov, and P. V. S. Marques, “Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings,” Opt. Express 14(21), 9594–9599 (2006).
    [Crossref] [PubMed]
  34. F. Shen, C. Wang, Z. Sun, K. Zhou, L. Zhang, and X. Shu, “Small-period long-period fiber grating with improved refractive index sensitivity and dual-parameter sensing ability,” Opt. Lett. 42(2), 199–202 (2017).
    [Crossref] [PubMed]
  35. M. Z. Alam and J. Albert, “Selective Excitation of Radially and Azimuthally Polarized Optical Fiber Cladding Modes,” J. Lightwave Technol. 31(19), 3167–3175 (2013).
    [Crossref]
  36. C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
    [Crossref] [PubMed]
  37. H. Hu, Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
    [Crossref]
  38. F. Chiavaioli, C. Trono, and F. Baldini, “Specially designed long period grating with internal geometric bending for enhanced refractive index sensitivity,” Appl. Phys. Lett. 102(23), 231109 (2013).
    [Crossref]

2017 (2)

2016 (5)

2015 (4)

2014 (3)

2013 (2)

M. Z. Alam and J. Albert, “Selective Excitation of Radially and Azimuthally Polarized Optical Fiber Cladding Modes,” J. Lightwave Technol. 31(19), 3167–3175 (2013).
[Crossref]

F. Chiavaioli, C. Trono, and F. Baldini, “Specially designed long period grating with internal geometric bending for enhanced refractive index sensitivity,” Appl. Phys. Lett. 102(23), 231109 (2013).
[Crossref]

2012 (2)

2011 (3)

2009 (1)

2008 (2)

2007 (1)

2006 (4)

2005 (1)

2004 (1)

2003 (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), 49–61 (2003).
[Crossref]

2002 (2)

2000 (1)

K. Chiang, Y. Liu, M. Ng, and X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

Alam, M. Z.

Albert, J.

Allsop, T.

Arregui, F.

Ashwell, G. J.

Åslund, M. L.

Baldini, F.

F. Chiavaioli, C. Trono, and F. Baldini, “Specially designed long period grating with internal geometric bending for enhanced refractive index sensitivity,” Appl. Phys. Lett. 102(23), 231109 (2013).
[Crossref]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref] [PubMed]

Bandyopadhyay, S.

Barton, J. S.

Basumallick, N.

Becker, R. G.

Bennion, I.

Bhatia, V.

Biswas, P.

Bock, W. J.

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition,” Opt. Express 24(11), 11897–11904 (2016).
[Crossref] [PubMed]

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits,” Meas. Sci. Technol. 22(1), 207–209 (2011).
[Crossref]

Bucholtz, F.

Campopiano, S.

Canning, J.

Carter, R. M.

Caucheteur, C.

Chah, K.

Chaubey, S.

S. Chaubey, S. Kher, J. Kishore, and S. M. Oak, “CO2 laser-inscribed low-cost, shortest-period long period fibre grating in B-Ge co-doped fibre for high-sensitivity strain measurement,” Pramana 82(2), 373–377 (2014).
[Crossref]

Chehura, E.

Chen, J.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits,” Meas. Sci. Technol. 22(1), 207–209 (2011).
[Crossref]

Chiang, K.

K. Chiang, Y. Liu, M. Ng, and X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[Crossref]

Chiavaioli, F.

F. Chiavaioli, C. Trono, and F. Baldini, “Specially designed long period grating with internal geometric bending for enhanced refractive index sensitivity,” Appl. Phys. Lett. 102(23), 231109 (2013).
[Crossref]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref] [PubMed]

Chikh-Bled, H.

Chung, K. W.

Contessa, L.

Cusano, A.

Cutolo, A.

Del Villar, I.

Deng, C.

Deng, Q.

H. Hu, Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Dong, X.

K. Chiang, Y. Liu, M. Ng, and X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[Crossref]

Dong, Y.

Erdogan, T.

Fan, P.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Floreani, F.

Fuerbach, A.

Gan, X.

Giordano, M.

González-Vila, Á.

Groothoff, N.

Guan, B.

T. Guo, F. Liu, B. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Guan, B. O.

Guo, T.

T. Guo, F. Liu, B. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Han, L.

Hu, H.

H. Hu, Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Huang, W.

Iadicicco, A.

Ivanov, O. V.

Jackson, S. D.

James, S. W.

Jedrzejewski, K. P.

Jiang, B.

Jin, W.

Jones, B. J. S.

Jovanovic, N.

Kersey, A. D.

Kher, S.

S. Chaubey, S. Kher, J. Kishore, and S. M. Oak, “CO2 laser-inscribed low-cost, shortest-period long period fibre grating in B-Ge co-doped fibre for high-sensitivity strain measurement,” Pramana 82(2), 373–377 (2014).
[Crossref]

Kinet, D.

Kishore, J.

S. Chaubey, S. Kher, J. Kishore, and S. M. Oak, “CO2 laser-inscribed low-cost, shortest-period long period fibre grating in B-Ge co-doped fibre for high-sensitivity strain measurement,” Pramana 82(2), 373–377 (2014).
[Crossref]

Koba, M.

Krämer, R. G.

Lalanne, P.

Lasri, B.

Li, J.

P. Fan, L. P. Sun, Z. Yu, J. Li, C. Wu, and B. O. Guan, “Higher-order diffraction of long-period microfiber gratings realized by arc discharge method,” Opt. Express 24(22), 25380–25388 (2016).
[Crossref] [PubMed]

H. Hu, Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Li, Y.

Liu, D.

Liu, F.

T. Guo, F. Liu, B. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Liu, Y.

F. Zou, Y. Liu, C. Deng, Y. Dong, S. Zhu, and T. Wang, “Refractive index sensitivity of nano-film coated long-period fiber gratings,” Opt. Express 23(2), 1114–1124 (2015).
[Crossref] [PubMed]

K. Chiang, Y. Liu, M. Ng, and X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[Crossref]

Lu, X.

Maier, R. R. J.

Mao, D.

Marques, P. V. S.

Marshall, G. D.

Matías, I.

McCulloch, S.

Mikulic, P.

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition,” Opt. Express 24(11), 11897–11904 (2016).
[Crossref] [PubMed]

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits,” Meas. Sci. Technol. 22(1), 207–209 (2011).
[Crossref]

Mou, C.

Nemanja, N.

Ng, M.

K. Chiang, Y. Liu, M. Ng, and X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[Crossref]

Nolte, S.

Oak, S. M.

S. Chaubey, S. Kher, J. Kishore, and S. M. Oak, “CO2 laser-inscribed low-cost, shortest-period long period fibre grating in B-Ge co-doped fibre for high-sensitivity strain measurement,” Pramana 82(2), 373–377 (2014).
[Crossref]

Patrick, H. J.

Pilla, P.

Qi, M.

Rees, N. D.

Rego, G.

Ren, Z.

Romero, R.

Shao, L. Y.

Shen, F.

Shevchenko, Y.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Shu, X.

Smietana, M.

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition,” Opt. Express 24(11), 11897–11904 (2016).
[Crossref] [PubMed]

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits,” Meas. Sci. Technol. 22(1), 207–209 (2011).
[Crossref]

Staines, S. E.

Steel, M. J.

Sun, L. P.

Sun, Q.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sun, Z.

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tatam, R. P.

Thomas, J.

Thomas, J. U.

Trono, C.

F. Chiavaioli, C. Trono, and F. Baldini, “Specially designed long period grating with internal geometric bending for enhanced refractive index sensitivity,” Appl. Phys. Lett. 102(23), 231109 (2013).
[Crossref]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref] [PubMed]

Tünnermann, A.

Vengsarkar, A. M.

Voisin, V.

Wang, C.

Wang, Q.

H. Hu, Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Wang, T.

Wang, Y.

Webb, D. J.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Withford, M. J.

Wong, R. Y.

Wu, C.

Wuilpart, M.

Xu, C.

Xu, C. Q.

Xuan, H.

Yan, Z.

Yang, J.

Yang, L.

Yin, S.

Yu, Z.

Zhang, L.

Zhang, M.

Zhang, W.

Zhao, J.

Zhao, Y.

H. Hu, Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

Zhou, K.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zhu, S.

Zou, F.

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

F. Chiavaioli, C. Trono, and F. Baldini, “Specially designed long period grating with internal geometric bending for enhanced refractive index sensitivity,” Appl. Phys. Lett. 102(23), 231109 (2013).
[Crossref]

Electron. Lett. (1)

K. Chiang, Y. Liu, M. Ng, and X. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36(11), 966–967 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Hu, Q. Deng, Y. Zhao, J. Li, and Q. Wang, “Sensing properties of long period fiber grating coated by silver film,” IEEE Photonics Technol. Lett. 27(1), 46–49 (2015).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—pushing the fabrication technique toward its limits,” Meas. Sci. Technol. 22(1), 207–209 (2011).
[Crossref]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), 49–61 (2003).
[Crossref]

Opt. Express (13)

G. Rego, O. V. Ivanov, and P. V. S. Marques, “Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings,” Opt. Express 14(21), 9594–9599 (2006).
[Crossref] [PubMed]

I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[Crossref] [PubMed]

P. Fan, L. P. Sun, Z. Yu, J. Li, C. Wu, and B. O. Guan, “Higher-order diffraction of long-period microfiber gratings realized by arc discharge method,” Opt. Express 24(22), 25380–25388 (2016).
[Crossref] [PubMed]

Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25(4), 3336–3346 (2017).
[Crossref] [PubMed]

F. Zou, Y. Liu, C. Deng, Y. Dong, S. Zhu, and T. Wang, “Refractive index sensitivity of nano-film coated long-period fiber gratings,” Opt. Express 23(2), 1114–1124 (2015).
[Crossref] [PubMed]

I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
[Crossref] [PubMed]

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition,” Opt. Express 24(11), 11897–11904 (2016).
[Crossref] [PubMed]

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
[Crossref] [PubMed]

H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
[Crossref] [PubMed]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
[Crossref] [PubMed]

C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[Crossref] [PubMed]

J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings II: complete vectorial analysis,” Opt. Express 20(19), 21434–21449 (2012).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

T. Guo, F. Liu, B. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Opt. Lett. (8)

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
[Crossref] [PubMed]

K. W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29(8), 812–814 (2004).
[Crossref] [PubMed]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref] [PubMed]

K. Chah, V. Voisin, D. Kinet, and C. Caucheteur, “Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings,” Opt. Lett. 39(24), 6887–6890 (2014).
[Crossref] [PubMed]

H. Chikh-Bled, K. Chah, Á. González-Vila, B. Lasri, and C. Caucheteur, “Behavior of femtosecond laser-induced eccentric fiber Bragg gratings at very high temperatures,” Opt. Lett. 41(17), 4048–4051 (2016).
[Crossref] [PubMed]

B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
[Crossref] [PubMed]

F. Shen, C. Wang, Z. Sun, K. Zhou, L. Zhang, and X. Shu, “Small-period long-period fiber grating with improved refractive index sensitivity and dual-parameter sensing ability,” Opt. Lett. 42(2), 199–202 (2017).
[Crossref] [PubMed]

Pramana (1)

S. Chaubey, S. Kher, J. Kishore, and S. M. Oak, “CO2 laser-inscribed low-cost, shortest-period long period fibre grating in B-Ge co-doped fibre for high-sensitivity strain measurement,” Pramana 82(2), 373–377 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of grating fabrication configuration. (b) Microscope view of the fabricated LPG.
Fig. 2
Fig. 2 (a) Transmission and (b) reflection spectrum of the eccentric LPG. The reflection spectrum was measured with index matching gel to eliminate the background reflection.
Fig. 3
Fig. 3 Polarization dependence of the LPG transmission spectrum.
Fig. 4
Fig. 4 LPG transmission spectra in different surround refractive index.
Fig. 5
Fig. 5 Wavelength response of (a) the peak around 1415 nm; (b) the peaks around 1660 nm and 1670 nm to different surrounding refractive index.
Fig. 6
Fig. 6 Temperature response of (a) the peak around 1415 nm; (b) the peaks around 1660 nm.

Tables (1)

Tables Icon

Table 1 Estimated effective index at the indicated wavelengths

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ LPG =(nef f co nef f cl,i )Λ
λ Bragg =2nef f co Λ N

Metrics