Abstract

We present and analyze two pathways to produce commercial optical-fiber patch cords with stable long-term transmission in the ultraviolet (UV) at powers up to ~ 200 mW, and typical bulk transmission between 66–75 %. Commercial fiber patch cords in the UV are of great interest across a wide variety of scientific applications ranging from biology to metrology, and the lack of availability has yet to be suitably addressed. We provide a guide to producing such solarization-resistant, hydrogen-passivated, polarization-maintaining, connectorized and jacketed optical fibers compatible with demanding scientific and industrial applications. Our presentation describes the fabrication and hydrogen loading procedure in detail and presents a high-pressure vessel design, calculations of required H2 loading times, and information on patch cord handling and the mitigation of bending sensitivities. Transmission at 313 nm is measured over many months for cumulative energy on the fiber output of > 10 kJ with no demonstrable degradation due to UV solarization, in contrast to standard uncured fibers. Polarization sensitivity and stability are characterized yielding polarization extinction ratios between 15 dB and 25 dB at 313 nm, where we find patch cords become linearly polarizing. We observe that particle deposition at the fiber facet induced by high-intensity UV exposure can (reversibly) deteriorate patch cord performance and describe a technique for nitrogen purging of fiber collimators which mitigates this phenomenon.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode optical fiber for high-power, low-loss UV transmission

Yves Colombe, Daniel H. Slichter, Andrew C. Wilson, Dietrich Leibfried, and David J. Wineland
Opt. Express 22(16) 19783-19793 (2014)

Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery

Fei Yu, Maria Cann, Adam Brunton, William Wadsworth, and Jonathan Knight
Opt. Express 26(8) 10879-10887 (2018)

Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy

Paul S. Hsu, Waruna D. Kulatilaka, Naibo Jiang, James R. Gord, and Sukesh Roy
Appl. Opt. 51(18) 4047-4057 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
    [Crossref]
  2. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
    [Crossref] [PubMed]
  3. L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
    [Crossref]
  4. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
    [Crossref] [PubMed]
  5. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 1–86 (2015).
    [Crossref]
  6. T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
    [Crossref]
  7. H. Shangguan, L. W. Casperson, D. L. Paisley, and S. A. Prahl, “Photographic studies of laser-induced bubble formation in absorbing liquids and on submerged targets: implications for drug delivery with microsecond laser pulses,” Opt. Eng. 37, 2217–2226 (1998).
    [Crossref]
  8. B. Bartels and A. Svatos, “Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI,” Front. Plant Sci. 6, 471 (2015).
    [Crossref] [PubMed]
  9. H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
    [Crossref]
  10. D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31, 757–759 (2006).
    [Crossref] [PubMed]
  11. A.-T. Nguyen, L.-B. Wang, M. Schauer, and J. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instrum. 81, 053110 (2010).
    [Crossref]
  12. R. A. Carollo, D. A. Lane, E. K. Kleiner, P. A. Kyaw, C. C. Teng, C. Y. Ou, S. Qiao, and D. Hanneke, “Third-harmonic-generation of a diode laser for quantum control of beryllium ions,” Opt. Express 25, 7220–7229 (2017).
    [Crossref] [PubMed]
  13. L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE4347, 155–168 (2001).
    [Crossref]
  14. A. W. Snyder and J. Love, Optical Waveguide Theory(Springer Science & Business Media, 2012).
  15. N. Kuzuu, “OH content dependence of ArF excimer-laser-induced absorption in type III fused silica,” Proc. SPIE 2714, 71–79 (1996).
    [Crossref]
  16. Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 2222, 1401–1409 (2014).
  17. P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All-silica fibers with high-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
    [Crossref]
  18. P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
    [Crossref]
  19. M. D. Nielsen, N. A. Mortensen, J. R. Folkenberg, and A. Bjarklev, “Mode-field radius of photonic crystal fibers expressed by the V parameter,” Opt. Lett. 28, 2309–2311 (2003).
    [Crossref] [PubMed]
  20. M. Nielsen and N. Mortensen, “Photonic crystal fiber design based on the V-parameter,” Opt. Express 11, 2762–2768 (2003).
    [Crossref] [PubMed]
  21. P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
    [Crossref]
  22. J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
    [Crossref]
  23. R. Barth, K. Simons, and C. San, “Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis,” Tech. rep., Sandia National Laboratories (2013).
    [Crossref]
  24. C. San Marchi and B. P. Somerday, “Technical reference on hydrogen compatibility of materials,” Tech. rep., Sandia National Laboratories (2012).
    [Crossref]
  25. T. R. Marrero and E. A. Mason, “Gaseous diffusion coefficients,” J. Phys. Chem. 1, 3–118 (1972).
  26. C. Fagermo, NKT Photonics, Personal communication (2016).
  27. A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
    [Crossref]
  28. NIST Boulder Ion storage group, “UV fiber patch cord recipe,” nist.gov/document-1991 (2014). [Online; accessed 24-March-2017].
  29. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961 (1997).
    [Crossref] [PubMed]
  30. M. Nielsen, N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12, 1775–1779 (2004).
    [Crossref] [PubMed]
  31. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13, 7621–7630 (2005).
    [Crossref] [PubMed]
  32. Y. Colombe, Universität Innsbruck, Personal communication (2016, 2017).
  33. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
    [Crossref]
  34. A. C. Wilson, National Institute of Standards and Technology, Boulder Laboratories, Personal communication (2016, 2017).

2017 (1)

2015 (3)

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 1–86 (2015).
[Crossref]

B. Bartels and A. Svatos, “Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI,” Front. Plant Sci. 6, 471 (2015).
[Crossref] [PubMed]

2014 (2)

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 2222, 1401–1409 (2014).

2011 (1)

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

2010 (1)

A.-T. Nguyen, L.-B. Wang, M. Schauer, and J. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instrum. 81, 053110 (2010).
[Crossref]

2008 (1)

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref] [PubMed]

2007 (1)

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

2006 (2)

D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, “Laser cooling of trapped ytterbium ions with an ultraviolet diode laser,” Opt. Lett. 31, 757–759 (2006).
[Crossref] [PubMed]

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

2005 (1)

2004 (1)

2003 (2)

2001 (1)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

1998 (4)

H. Shangguan, L. W. Casperson, D. L. Paisley, and S. A. Prahl, “Photographic studies of laser-induced bubble formation in absorbing liquids and on submerged targets: implications for drug delivery with microsecond laser pulses,” Opt. Eng. 37, 2217–2226 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All-silica fibers with high-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

1997 (1)

1996 (1)

N. Kuzuu, “OH content dependence of ArF excimer-laser-induced absorption in type III fused silica,” Proc. SPIE 2714, 71–79 (1996).
[Crossref]

1991 (1)

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[Crossref]

1972 (2)

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[Crossref]

T. R. Marrero and E. A. Mason, “Gaseous diffusion coefficients,” J. Phys. Chem. 1, 3–118 (1972).

Albertsen, M.

Alonso, J.

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Bartels, B.

B. Bartels and A. Svatos, “Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI,” Front. Plant Sci. 6, 471 (2015).
[Crossref] [PubMed]

Barth, R.

R. Barth, K. Simons, and C. San, “Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis,” Tech. rep., Sandia National Laboratories (2013).
[Crossref]

Baumann, T. M.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Bergquist, J. C.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Birks, T. A.

Bjarklev, A.

Blakestad, R. B.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Blatt, R.

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref] [PubMed]

Bollinger, J. J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Bonacinni, D.

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 1–86 (2015).
[Crossref]

Britton, J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Broeng, J.

Brown, K. R.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Carollo, R. A.

Casperson, L. W.

H. Shangguan, L. W. Casperson, D. L. Paisley, and S. A. Prahl, “Photographic studies of laser-induced bubble formation in absorbing liquids and on submerged targets: implications for drug delivery with microsecond laser pulses,” Opt. Eng. 37, 2217–2226 (1998).
[Crossref]

Cetina, M.

Chiaverini, J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Clercq, L. E. De

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Colombe, Y.

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 2222, 1401–1409 (2014).

Y. Colombe, Universität Innsbruck, Personal communication (2016, 2017).

Cox, J. A.

Crespo Lopez-Urrutia, J. R.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Curtis, E. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Diddams, S. A.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Drewsen, M.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Drullinger, R. E.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Epstein, R. J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Fagermo, C.

C. Fagermo, NKT Photonics, Personal communication (2016).

Feuchtenbeiner, S.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Folkenberg, J.

Folkenberg, J. R.

Fortier, T. M.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Fulrath, R. M.

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[Crossref]

Hanneke, D.

Hansen, A. K.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Hansen, K.

Hillrichs, G.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All-silica fibers with high-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

Hirano, M.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE4347, 155–168 (2001).
[Crossref]

Hollberg, L.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Home, J. P.

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Hosono, H.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE4347, 155–168 (2001).
[Crossref]

Hume, D. B.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Iliew, R.

Itano, W. M.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Jacobsen, C.

Jost, J. D.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Karlitschek, P.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All-silica fibers with high-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

Kärtner, F. X.

Keitch, B. C.

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Kielpinski, D.

Kienzler, D.

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Kim, K.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Klein, K.-F.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All-silica fibers with high-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

Kleiner, E. K.

Knight, J. C.

Koelemeij, J. C. J.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Kohnen, M.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Kuzuu, N.

N. Kuzuu, “OH content dependence of ArF excimer-laser-induced absorption in type III fused silica,” Proc. SPIE 2714, 71–79 (1996).
[Crossref]

Kyaw, P. A.

Lane, D. A.

Langer, C.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Lederer, F.

Lee, W. D.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Leibfried, D.

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 2222, 1401–1409 (2014).

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Lemaire, P. J.

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[Crossref]

Leopold, T.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Limpert, J.

Lo, H. Y.

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory(Springer Science & Business Media, 2012).

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 1–86 (2015).
[Crossref]

Marrero, T. R.

T. R. Marrero and E. A. Mason, “Gaseous diffusion coefficients,” J. Phys. Chem. 1, 3–118 (1972).

Mason, E. A.

T. R. Marrero and E. A. Mason, “Gaseous diffusion coefficients,” J. Phys. Chem. 1, 3–118 (1972).

Micke, P.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Mlynek, J. A.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Mortensen, N.

Mortensen, N. A.

Negnevitsky, V.

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Nguyen, A.-T.

A.-T. Nguyen, L.-B. Wang, M. Schauer, and J. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instrum. 81, 053110 (2010).
[Crossref]

Nielsen, M.

Nielsen, M. D.

Oates, C. W.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Ospelkaus, C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Ou, C. Y.

Ozeri, R.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Paisley, D. L.

H. Shangguan, L. W. Casperson, D. L. Paisley, and S. A. Prahl, “Photographic studies of laser-induced bubble formation in absorbing liquids and on submerged targets: implications for drug delivery with microsecond laser pulses,” Opt. Eng. 37, 2217–2226 (1998).
[Crossref]

Pedregosa-Gutierrez, J.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 1–86 (2015).
[Crossref]

Petersson, A.

Piest, B.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Prahl, S. A.

H. Shangguan, L. W. Casperson, D. L. Paisley, and S. A. Prahl, “Photographic studies of laser-induced bubble formation in absorbing liquids and on submerged targets: implications for drug delivery with microsecond laser pulses,” Opt. Eng. 37, 2217–2226 (1998).
[Crossref]

Qiao, S.

Reichle, R.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Rosenband, T.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Röser, F.

Russell, P. S. J.

San, C.

R. Barth, K. Simons, and C. San, “Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis,” Tech. rep., Sandia National Laboratories (2013).
[Crossref]

San Marchi, C.

C. San Marchi and B. P. Somerday, “Technical reference on hydrogen compatibility of materials,” Tech. rep., Sandia National Laboratories (2012).
[Crossref]

Schauer, M.

A.-T. Nguyen, L.-B. Wang, M. Schauer, and J. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instrum. 81, 053110 (2010).
[Crossref]

Schmidt, O.

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 1–86 (2015).
[Crossref]

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Schmoeger, L.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Schreiber, T.

Schwarz, M.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Seidelin, S.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Shackelford, J. F.

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[Crossref]

Shangguan, H.

H. Shangguan, L. W. Casperson, D. L. Paisley, and S. A. Prahl, “Photographic studies of laser-induced bubble formation in absorbing liquids and on submerged targets: implications for drug delivery with microsecond laser pulses,” Opt. Eng. 37, 2217–2226 (1998).
[Crossref]

Shiga, N.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Simons, K.

R. Barth, K. Simons, and C. San, “Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis,” Tech. rep., Sandia National Laboratories (2013).
[Crossref]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE4347, 155–168 (2001).
[Crossref]

Slichter, D. H.

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 2222, 1401–1409 (2014).

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory(Springer Science & Business Media, 2012).

Somerday, B. P.

C. San Marchi and B. P. Somerday, “Technical reference on hydrogen compatibility of materials,” Tech. rep., Sandia National Laboratories (2012).
[Crossref]

Stalnaker, J. E.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Studt, P. L.

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[Crossref]

Svatos, A.

B. Bartels and A. Svatos, “Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI,” Front. Plant Sci. 6, 471 (2015).
[Crossref] [PubMed]

Teng, C. C.

Torgerson, J.

A.-T. Nguyen, L.-B. Wang, M. Schauer, and J. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instrum. 81, 053110 (2010).
[Crossref]

Tünnermann, A.

Udem, T.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Ullrich, J.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

VanDevender, A. P.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Versolato, O. O.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Vogel, K. R.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Wang, L.-B.

A.-T. Nguyen, L.-B. Wang, M. Schauer, and J. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instrum. 81, 053110 (2010).
[Crossref]

Wesenberg, J. H.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Wilson, A. C.

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 2222, 1401–1409 (2014).

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

A. C. Wilson, National Institute of Standards and Technology, Boulder Laboratories, Personal communication (2016, 2017).

Windberger, A.

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

Wineland,

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 2222, 1401–1409 (2014).

Wineland, D.

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref] [PubMed]

Wineland, D. J.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 1–86 (2015).
[Crossref]

Appl. Phys. B (2)

H. Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. De Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mw, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Front. Plant Sci. (1)

B. Bartels and A. Svatos, “Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI,” Front. Plant Sci. 6, 471 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[Crossref]

J. Non-Cryst. Solids (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

J. Phys. Chem. (1)

T. R. Marrero and E. A. Mason, “Gaseous diffusion coefficients,” J. Phys. Chem. 1, 3–118 (1972).

Nature (1)

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: All-silica fibers with high-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155, 386–397 (1998).
[Crossref]

Opt. Eng. (2)

H. Shangguan, L. W. Casperson, D. L. Paisley, and S. A. Prahl, “Photographic studies of laser-induced bubble formation in absorbing liquids and on submerged targets: implications for drug delivery with microsecond laser pulses,” Opt. Eng. 37, 2217–2226 (1998).
[Crossref]

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. J. Wineland, “Observation of the 1S0 → 3P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,” Phys. Rev. Lett. 96, 1–4 (2006).
[Crossref]

Proc. SPIE (1)

N. Kuzuu, “OH content dependence of ArF excimer-laser-induced absorption in type III fused silica,” Proc. SPIE 2714, 71–79 (1996).
[Crossref]

Rev. Mod. Phys. (1)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 1–86 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

A.-T. Nguyen, L.-B. Wang, M. Schauer, and J. Torgerson, “Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions,” Rev. Sci. Instrum. 81, 053110 (2010).
[Crossref]

Science (2)

L. Schmoeger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. Crespo Lopez-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Other (8)

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” Proc. SPIE4347, 155–168 (2001).
[Crossref]

A. W. Snyder and J. Love, Optical Waveguide Theory(Springer Science & Business Media, 2012).

NIST Boulder Ion storage group, “UV fiber patch cord recipe,” nist.gov/document-1991 (2014). [Online; accessed 24-March-2017].

C. Fagermo, NKT Photonics, Personal communication (2016).

R. Barth, K. Simons, and C. San, “Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis,” Tech. rep., Sandia National Laboratories (2013).
[Crossref]

C. San Marchi and B. P. Somerday, “Technical reference on hydrogen compatibility of materials,” Tech. rep., Sandia National Laboratories (2012).
[Crossref]

Y. Colombe, Universität Innsbruck, Personal communication (2016, 2017).

A. C. Wilson, National Institute of Standards and Technology, Boulder Laboratories, Personal communication (2016, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Pictorial representation of pathways to obtaining UV-compatible patch cords.
Fig. 2
Fig. 2 Normalized transmission through patch cords as a function of time. Fibers were a pre-connectorized LMA-PM-10 (blue, fabricated by ALPhANOV), an aeroGuide patch cord (green, fabricated by NKT Photonics) and a pre-connectorized, unloaded LMA-PM-10 (red, fabricated by ALPhANOV). Green arrows indicate recoupling of the fiber after thermalization of the connector. Drifts in green curve dominated by drifts in input power. Inset: Relative concentration at r = 0 as a function of temperature and diffusion time calculated for a 230 μm diameter fiber. Colour and iso-concentration contours indicate change in concentration from starting value towards maximum/minimum value, e.g. for an empty fiber the 0.2 line indicates the time to reach 20% full and for a saturated fiber it indicates 20% lost. See text for details.
Fig. 3
Fig. 3 (a): Calculated bending losses for an LMA-PM-10 based patch cord as a function of bending radius for two wavelengths. Calculation based on [30] with the following parameters for LMA-PM-10: lattice pitch Λ = 6 μm, refractive index of silica ns = 1.444, and hole diameter d = 3 μm, which inform the values for V* ≈ 3.75 and Aeff ≈ 36.75 μm2 from references [19, 20]. (b): Patch cord on stretching jig to reduce bend losses after loading. Fiber connectors are fixed to Thorlabs SM1FCA on steel pillars rotating freely in their posts such that the fiber does not bend at the boot. Patch cords are kept under sufficient tension to allow for strongly damped string oscillation so the jacket is straightened. (c): Fiber transmission as function of time with sharp bends induced. First two drops induced by sharp bends at intermediate positions along the fiber. The last drop caused by a bend induced at the boot.
Fig. 4
Fig. 4 High pressure H2 vessel design for loading fiber patch cords with mitigated bend losses through plastic jacket memory. Fibers sit in the pressurized low-volume channel denoted “sample chamber.” The vessel is pressurized with H2 from a manifold via a 1/4″-NPT tube fitting on the H2 inlet. Fastening (tapped holes of 5/8-11 UNC - 2B and 3/4-10 UNC - 2B with corresponding hex head bolts of 5/8×1.25 and 3/4×1.25 from SA-320 B8 Class 2) and plate thicknesses selected on advice following design validation and compliance assurance conducted in cooperation with an accredited engineering consulting firm. Left: Top-down view, explosion view of parts and intersection view from A to B along indicated line. Right: Ray traced image of validated design.
Fig. 5
Fig. 5 (a): Normalized transmission through LMA-PM-10 patch cords as a function of time. Decreasing transmission due to scattering-center deposition on the fiber facet (red curve) is reversible with polishing. Purging the fiber collimator with dry N2 mitigates this phenomenon. Dips in power stem from laser instabilities. Inset shows a mounting assembly for N2-purged 60FC collimators from Schäfter + Kirchhoff. The collimator is mounted in the front using a Thorlabs AD12NT adapter for 1” optics. The flushing jig is aligned to position the hose barb above a venting hole drilled in the space between lens tube and fiber facet. Two set screws fasten the jig. Lens adjustment with jig in place is possible on longer focal length collimators. (b): Micrograph of a N2-flushed aeroGuide fiber facet (guided fundamental mode at 633 nm), showing magnified ≈ 10 μm diameter core region where the hexagonal mode shape is visible in the glass after many hours of UV transmission with no detrimental effects on coupling efficiency. This pattern is not the actual hole pattern as this image is focused on the facet rather than the hole structure behind the endcap. (c): Near-field transmitted light using a fiber alignment tool, imaged with the detector in saturation in order to show the fundamental (Gaussian) and the hexagonal pattern arising from the hole pattern which is invisible without saturating the detector. (d): Far field transmission. (e)–(g): Same as for (b)–(d) above, but for a connector which was not N2-purged. Polishing the deposits away restores the observations in (b)–(d).
Fig. 6
Fig. 6 (a): Representative data for normalized transmission through UV patch cord as a function of input polarization angle. Data taken with 5 m aeroGuide patch cord at P ≈ 30 mW. Axis refers to the fiber slow axis. (b)–(d): Polarization extinction ratios measured behind LMA-PM-10 fiber based patch cords. Panel (d) has two different fibers of the same kind and length. Mechanical or thermal strain is applied to modify birefringence. Arrows indicate typical signatures of thermal strain (red), mechanical strain (green), and artifacts from laser lock disturbances (black). (e): Polarization extinction ratios measured behind LMA-10-UV bare fiber, again under themral and mechanical stress. Note the different time scale relative to panels (b)–(d). All PER measurements used P ≈ 10 mW at the fiber output.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

V = 2 π ρ λ ( n co 2 n cl 2 ) 1 / 2 = 2 π ρ λ × N A 2.405 ,
V PCF = 2 π Λ λ ( n co 2 ( λ ) n cl 2 ( λ ) ) 1 / 2 = 2 π Λ λ × N A π ,
C out ( r , t ) = 2 n = 1 J 0 ( μ n R 0 r ) μ n J 1 ( μ n ) e D ( μ n R 0 ) 2 t ,
t x % ( r 1 ) = t x % ( R 2 ) × ( R 1 R 2 ) 2 ,
S = p ( h 2 2 π m k T ) 3 2 N s k T [ e θ ν 2 T 1 e θ ν T ] 3 e E 0 N A k T ,
t C ( r , t ) = D ( T ) Δ C ( r , t )
t C ( r , t ) = D ( T ) ( r 2 C ( r , t ) + 1 r r C ( r , t ) ) = D r r [ r r C ( r , t ) ] ,
C ( r , t ) = A 1 [ A 2 J 0 ( λ r ) + A 3 Y 0 ( λ r ) ] e λ 2 D t ,
J 0 ( λ R 0 ) = ! 0 μ n = λ n R 0 λ n = μ n R 0 ,
C ( r , t ) = n = 1 A n J 0 ( μ n R 0 r ) e D ( μ n R 0 ) 2 t .
C ( r , 0 ) = C 0 ( r ) = n = 1 A n J 0 ( μ n R 0 r ) ,
A n = C 0 ( r ) | J 0 ( μ n R 0 r ) J 0 ( μ n R 0 r ) | J 0 ( μ n R 0 r ) = 2 0 R 0 r C 0 ( r ) J 0 ( μ n R 0 r ) d r R 0 2 J 1 ( μ n ) .
C ( r , t ) = 2 R 0 2 n = 1 J 0 ( μ n R 0 r ) J 1 ( μ n ) 2 e D ( μ n R 0 ) 2 t 0 R 0 r C 0 ( r ) J 0 ( μ n R 0 r ) d r .
C 0 ( r ) = { 0 r = R 0 1 else .
0 R 0 r J 0 ( μ n R 0 r ) d r = R 0 2 J 1 ( μ n ) μ n ,
C ( r , t ) = 2 n = 1 J 0 ( μ n R 0 r ) μ n J 1 ( μ n ) e D ( μ n R 0 ) 2 t .

Metrics