Abstract

Chalcogenide glasses, with high nonlinearity and low loss, have captured research interest as an integrated device platform for near- and mid-infrared nonlinear optical devices. Compared to silicon-based microfabrication technologies, chalcogenide fabrication processes are less mature and a major challenge is obtaining high quality devices. In this paper, we report a hybrid resonator design leveraging a high quality silica resonator to achieve high Q factors with chalcogenide. The device is composed of a thin chalcogenide layer deposited on a silica wedge resonator. The hybrid resonators exhibit loaded Q factors up to 1.5 x 105 in the near-infrared region. We also measured the effective thermo-optic coefficient of the device to be 5.5x10−5/K, which agreed well with the bulk value. Thermal drift of the device can be significantly reduced by introducing a titanium dioxide cladding layer with a negative thermo-optic coefficient.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Q silica microdisk optical resonators with large wedge angles on a silicon chip

Guanyu Li, Pei Liu, Xiaoshun Jiang, Chao Yang, Jiyang Ma, Hongya Wu, and Min Xiao
Photon. Res. 3(5) 279-282 (2015)

Focusing of electromagnetic fields in high-Q hybrid wedge plasmon polariton microresonator

Qijing Lu, Fangjie Shu, Daru Chen, Genzhu Wu, and Pei Zhou
Appl. Opt. 51(29) 6968-6973 (2012)

A fully integrated high-Q Whispering-Gallery Wedge Resonator

Fernando Ramiro-Manzano, Nikola Prtljaga, Lorenzo Pavesi, Georg Pucker, and Mher Ghulinyan
Opt. Express 20(20) 22934-22942 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
    [Crossref] [PubMed]
  2. X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
    [Crossref] [PubMed]
  3. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
    [Crossref] [PubMed]
  4. M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices,” Opt. Express 23(6), 7870–7878 (2015).
    [Crossref] [PubMed]
  5. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [Crossref] [PubMed]
  6. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
    [Crossref]
  7. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [Crossref] [PubMed]
  8. X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38(8), 1304–1306 (2013).
    [Crossref] [PubMed]
  9. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
    [Crossref]
  10. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  11. M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths,” IEEE Photonics Technol. Lett. 28(23), 2720–2723 (2016).
    [Crossref]
  12. X. Gai, B. Luther-Davies, and T. P. White, “Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000),” Opt. Express 20(14), 15503–15515 (2012).
    [Crossref] [PubMed]
  13. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref] [PubMed]
  14. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18(25), 26695–26703 (2010).
    [Crossref] [PubMed]
  15. Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
    [Crossref] [PubMed]
  16. P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
    [Crossref]
  17. J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
    [Crossref] [PubMed]
  18. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
    [Crossref] [PubMed]
  19. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
    [Crossref]
  20. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  21. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  22. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106–108 (1979).
    [Crossref]
  23. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
    [Crossref]
  24. Schott Infrared Chalcogenide Glasses Datasheet, http://www.schott.com/d/advanced_optics/a8acc8e2-8855-4be6-8b2a-e4b2ada72a15/1.0/schott-infrared-chalcog-glasses-irg25-january-2016-eng.pdf
  25. Fused Silica Material Properties, http://www.translume.com/index.php/resources/item/186-fused-silica-material-properties
  26. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
    [Crossref]
  27. H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett. 36(11), 2152–2154 (2011).
    [Crossref] [PubMed]
  28. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  29. P. Alipour, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “Athermal performance in titania-clad microresonators on SOI,” Frontiers in Optics 2010/Laser Science XXVI (2010), FThQ6.
  30. J. D. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20(21), 23821–23831 (2012).
    [Crossref] [PubMed]
  31. B. A. Rose, A. J. Maker, and A. M. Armani, “Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR,” Opt. Mater. Express 2(5), 671–681 (2012).
    [Crossref]

2016 (3)

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths,” IEEE Photonics Technol. Lett. 28(23), 2720–2723 (2016).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (4)

2012 (5)

2011 (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett. 36(11), 2152–2154 (2011).
[Crossref] [PubMed]

2010 (3)

2008 (2)

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

2007 (1)

2005 (2)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

1996 (1)

1987 (1)

P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

1979 (1)

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Adibi, A.

Agarwal, A.

Aggarwal, I. D.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Ahn, S.

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths,” IEEE Photonics Technol. Lett. 28(23), 2720–2723 (2016).
[Crossref]

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices,” Opt. Express 23(6), 7870–7878 (2015).
[Crossref] [PubMed]

Armani, A. M.

Atikian, H. A.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bradley, J. D.

Bulla, D.

Burek, M. J.

Canciamilla, A.

Cardenas, J.

Carlie, N.

Chang, L.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Cheung, K. C.

Choi, D.-Y.

Choi, H. S.

Choy, J. T.

Chrostowski, L.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Colombo, L.

P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

Danto, S.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Deotare, P. B.

Ding, Y.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Dong, C.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Donzella, V.

Du, Q.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Eggleton, B. J.

Evans, C. C.

Feng, N.-N.

Feng, P. X. L.

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Flueckiger, J.

Gaddam, V.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Gai, X.

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Gopinath, J. T.

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths,” IEEE Photonics Technol. Lett. 28(23), 2720–2723 (2016).
[Crossref]

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices,” Opt. Express 23(6), 7870–7878 (2015).
[Crossref] [PubMed]

Gorodetsky, M. L.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

Grillet, C.

Grist, S. M.

Guha, B.

He, L.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Herr, T.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Holzwarth, R.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Hosaka, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Hu, J.

Hua, Q.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Hua, S.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Huang, I. C.

Huang, Y.

Ilchenko, V. S.

Ismail, S.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Jiang, X.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Kimerling, L.

Kimerling, L. C.

Kippenberg, T. J.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Kirk, J. T.

Kita, D.

Klocek, P.

P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

Kozacik, S.

Krogstad, M. R.

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths,” IEEE Photonics Technol. Lett. 28(23), 2720–2723 (2016).
[Crossref]

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices,” Opt. Express 23(6), 7870–7878 (2015).
[Crossref] [PubMed]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Lee, J. Y.

Lee, M. W.

Li, J.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref] [PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Li, L.

Lin, H.

Lin, P. T.

Lin, Q.

Lin, Z.

Lipson, M.

Loncar, M.

Lu, X.

Luther-Davies, B.

Luzinov, I.

Madden, S.

Mägi, E.

Maker, A. J.

Mazur, E.

Melloni, A.

Michon, J.

Miya, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Miyashita, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Monat, C.

Morichetti, F.

Murakowski, M.

Musgraves, J. D.

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Novak, S.

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Park, W.

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths,” IEEE Photonics Technol. Lett. 28(23), 2720–2723 (2016).
[Crossref]

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices,” Opt. Express 23(6), 7870–7878 (2015).
[Crossref] [PubMed]

Parsy, F.

Petit, L.

Phillips, K. C.

Prather, D.

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Ratner, D. M.

Reshef, O.

Richardson, K.

Rose, B. A.

Sanghera, J. S.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Savchenkov, A. A.

Schmidt, S. A.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Shi, W.

Singh, V.

Soltani, M.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Stark, P.

Talebi Fard, S.

Terunuma, Y.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

Tomljenovic-Hanic, S.

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Venkataraman, V.

Wang, C.

White, T. P.

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Wu, H.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Xiao, M.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Xiao, Y. F.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Yang, C.

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Yang, L.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Yegnanarayanan, S.

Zdyrko, B.

Zhang, W.

Zhu, J.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Zou, Y.

Appl. Phys. Lett. (1)

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Electron. Lett. (1)

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106–108 (1979).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths,” IEEE Photonics Technol. Lett. 28(23), 2720–2723 (2016).
[Crossref]

J. Non-Cryst. Solids (2)

P. Klocek and L. Colombo, “Index of refraction, dispersion, bandgap and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987).
[Crossref]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Opt. Express (10)

J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[Crossref] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

X. Gai, B. Luther-Davies, and T. P. White, “Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000),” Opt. Express 20(14), 15503–15515 (2012).
[Crossref] [PubMed]

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18(25), 26695–26703 (2010).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[Crossref] [PubMed]

M. R. Krogstad, S. Ahn, W. Park, and J. T. Gopinath, “Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices,” Opt. Express 23(6), 7870–7878 (2015).
[Crossref] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

J. D. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20(21), 23821–23831 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. A (2)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Phys. Rev. Lett. (1)

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Jiang, C. Yang, H. Wu, S. Hua, L. Chang, Y. Ding, Q. Hua, and M. Xiao, “On-chip optical nonreciprocity using an active microcavity,” Sci. Rep. 6(1), 38972 (2016).
[Crossref] [PubMed]

Other (3)

Schott Infrared Chalcogenide Glasses Datasheet, http://www.schott.com/d/advanced_optics/a8acc8e2-8855-4be6-8b2a-e4b2ada72a15/1.0/schott-infrared-chalcog-glasses-irg25-january-2016-eng.pdf

Fused Silica Material Properties, http://www.translume.com/index.php/resources/item/186-fused-silica-material-properties

P. Alipour, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “Athermal performance in titania-clad microresonators on SOI,” Frontiers in Optics 2010/Laser Science XXVI (2010), FThQ6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The process flow for fabricating chalcogenide glass-silica hybrid microdisk resonators. A SiO2/Si substrate is spin-coated with photoresist and overlaid with a photomask. Then, the photoresist is exposed to UV light and developed, leaving a disk-shaped pattern. Precisely controlled wet etching conditions are used to fabricate the silica wedge with an ultra-smooth surface. The underlying silicon is then partially etched with XeF2 to create pillar structure. Finally, a Ge28Sb12Se60 film is thermally evaporated onto the silica wedge.
Fig. 2
Fig. 2 (a) Tilted scanning electron micrographs (SEMs) of chalcogenide glass-silica hybrid resonators [inset of (a) shows schematic cross section of hybrid resonators and white box indicates the imaged position of resonator in (b)]. (b) SEM image of cleaved cross-section of the hybrid resonator composed of thin Ge28Sb12Se60 film and SiO2 wedge. The inset shows a magnified false color SEM image of the disk edge.
Fig. 3
Fig. 3 Transmission (black dot) spectrum using a tunable laser and silica tapered fiber. A Lorentzian fit (red curve) of a fundamental mode observed in the hybrid microdisk resonators with diameters of (a) 13.5 μm and (c) 46.5 μm. The full width at half maximum (FWHM) of the 13.5 μm diameter resonator is 330 pm and the 46.5 μm diameter resonator is 10 pm. SEM images present edges of the resonators with diameters of (b) 13.5 μm and (d) 46.5 μm.
Fig. 4
Fig. 4 Simulated fundamental mode profile in the resonator with 13.5 μm (top) and 46.5 μm diameter (bottom), showing field confinement in chalcogenide glass. The white solid outline indicates the silica wedge and ChG film. The white dash lines represent the center of modes. As the diameter of resonator increases, the mode moves to the inside of the disk which leads to isolation of the mode from rough boundary.
Fig. 5
Fig. 5 (a) Transmission vs. wavelength for a resonant mode in the hybrid resonator with diameter of 46.5 μm, taken at various temperatures. (b) Red shift in resonant wavelength of optical mode as a function of temperature. A linear fit to the data yields dλ/dT of 60.5 pm/°C.
Fig. 6
Fig. 6 (a) Cross-sectional mode profile in the athermal 3-layer hybrid resonator, which shows the field is stretched out into the TiO2 cladding layer. (b) Thermal shift of the resonant wavelength for the device with different TiO2 thickness. As the TiO2 thickness is increased, thermal shift of the mode gradually decreases, reaching zero at TiO2 thickness of 135.06 nm as indicated by star point.

Tables (1)

Tables Icon

Table 1 Thermo-optic coefficient of bulk materials at 1550nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q mat = 2πn αλ
λ= 2πRn m
dλ dT = 2π m ( R dn dT +n dR dT )
dn dT m 2πR dλ dT
d n eff dT = Γ air ( dn dT ) air + Γ ChG ( dn dT ) ChG + Γ Ti O 2 ( dn dT ) Ti O 2 + Γ Si O 2 ( dn dT ) Si O 2

Metrics