Abstract

A detailed study of the fabrication of silicon concave micromirrors for hemispherical microcavities is presented that includes fabrication yield, surface quality, surface roughness, cavity depth, radius of curvature, and the aspect ratio between the cavity depth and radius of curvature. Most importantly, it is shown that much larger cavity depths are possible than previously reported while achieving desirable aspect ratios and nanometer-level roughness. This should result in greater frequency stability and improved insensitivity to fabrication variations for the mode coupling optics. Spectral results for an assembled hemispherical microcavity are presented, demonstrating that high finesse and quality factor are achieved with these micromirrors, F = 1524 and Q = 3.78 x 105, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and characterization of an integrated surface ion trap and micromirror optical cavity

Andre Van Rynbach, George Schwartz, Robert F. Spivey, James Joseph, Geert Vrijsen, and Jungsang Kim
Appl. Opt. 56(23) 6511-6519 (2017)

Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques

Jorge Albero, Lukasz Nieradko, Christophe Gorecki, Heidi Ottevaere, Virginia Gomez, Hugo Thienpont, Juha Pietarinen, Birgit Päivänranta, and Nicolas Passilly
Opt. Express 17(8) 6283-6292 (2009)

Spherical silicon micromirrors bent by anodic bonding

Tong Wu, Takahiro Yamasaki, Ryohei Hokari, and Kazuhiro Hane
Opt. Express 19(12) 11897-11905 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
    [Crossref]
  2. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
    [Crossref]
  3. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
    [Crossref]
  4. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,” Opt. Lett. 35(13), 2293–2295 (2010).
    [Crossref] [PubMed]
  5. G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
    [Crossref]
  6. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556–3558 (2010).
    [Crossref] [PubMed]
  7. A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
    [Crossref]
  8. C. Derntl, M. Schneider, J. Schalko, A. Bittner, J. Schmiedmayer, U. Schmid, and M. Trupke, “Arrays of open, independently tunable microcavities,” Opt. Express 22(18), 22111–22120 (2014).
    [Crossref] [PubMed]
  9. J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
    [Crossref]
  10. K. Ott, S. Garcia, R. Kohlhaas, K. Schüppert, P. Rosenbusch, R. Long, and J. Reichel, “Millimeter-long fiber Fabry-Perot cavities,” Opt. Express 24(9), 9839–9853 (2016).
    [Crossref] [PubMed]
  11. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [Crossref] [PubMed]
  12. C.-H. Han and E.-S. Kim, “Study of self-limiting etching behavior in wet isotropic etching of silicon,” Jpn. J. Appl. Phys. 37(Part 1, No. 12B), 6939–6941 (1998).
    [Crossref]
  13. V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, “Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings,” J. Electrochem. Soc. 153(9), C641–C647 (2006).
    [Crossref]
  14. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [Crossref] [PubMed]
  15. Z. Yifan, C. Sihai, S. Edmond, and A. Bosseboeuf, “Deep wet etching in hydrofluoric acid, nitric acid, and acetic acid of cavities in a silicon wafer,” Jpn. J. Appl. Phys. 52(7R), 076503 (2013).
    [Crossref]
  16. K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
    [Crossref]
  17. Y. S. Ow, M. B. H. Breese, and S. Azimi, “Fabrication of concave silicon micro-mirrors,” Opt. Express 18(14), 14511–14518 (2010).
    [Crossref] [PubMed]
  18. A. Pan, B. Gao, T. Chen, J. Si, C. Li, F. Chen, and X. Hou, “Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching,” Opt. Express 22(12), 15245–15250 (2014).
    [Crossref] [PubMed]
  19. Certain commercial equipment, instruments, or materials are identified in this article in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
  20. M. Baranski, N. Passilly, S. Bargiel, L. Froehly, and C. Gorecki, “Miniature Schwarzschild objective as a micro-optical component free of main aberrations: concept, design, and first realization with silicon-glass micromachining,” Appl. Opt. 55(10), 2771–2779 (2016).
    [Crossref] [PubMed]
  21. D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81(4), 043814 (2010).
    [Crossref]

2016 (2)

2015 (1)

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

2014 (2)

2013 (1)

Z. Yifan, C. Sihai, S. Edmond, and A. Bosseboeuf, “Deep wet etching in hydrofluoric acid, nitric acid, and acetic acid of cavities in a silicon wafer,” Jpn. J. Appl. Phys. 52(7R), 076503 (2013).
[Crossref]

2012 (1)

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

2010 (6)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,” Opt. Lett. 35(13), 2293–2295 (2010).
[Crossref] [PubMed]

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35(21), 3556–3558 (2010).
[Crossref] [PubMed]

Y. S. Ow, M. B. H. Breese, and S. Azimi, “Fabrication of concave silicon micro-mirrors,” Opt. Express 18(14), 14511–14518 (2010).
[Crossref] [PubMed]

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81(4), 043814 (2010).
[Crossref]

2009 (1)

2006 (1)

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, “Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings,” J. Electrochem. Soc. 153(9), C641–C647 (2006).
[Crossref]

2005 (2)

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

2004 (1)

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

1998 (1)

C.-H. Han and E.-S. Kim, “Study of self-limiting etching behavior in wet isotropic etching of silicon,” Jpn. J. Appl. Phys. 37(Part 1, No. 12B), 6939–6941 (1998).
[Crossref]

1966 (1)

Albero, J.

Azimi, S.

Bagnall, D. M.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

Baranski, M.

Bargiel, S.

Benedikter, J.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Benito, F. M.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Berenschot, J. W.

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, “Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings,” J. Electrochem. Soc. 153(9), C641–C647 (2006).
[Crossref]

Biedermann, G. W.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Bittner, A.

Blain, M. G.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Bosseboeuf, A.

Z. Yifan, C. Sihai, S. Edmond, and A. Bosseboeuf, “Deep wet etching in hydrofluoric acid, nitric acid, and acetic acid of cavities in a silicon wafer,” Jpn. J. Appl. Phys. 52(7R), 076503 (2013).
[Crossref]

Bouwmeester, D.

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81(4), 043814 (2010).
[Crossref]

Breese, M. B. H.

Chen, F.

Chen, T.

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Cotter, J. P.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Derntl, C.

Deutsch, C.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Dolan, P. R.

Edmond, S.

Z. Yifan, C. Sihai, S. Edmond, and A. Bosseboeuf, “Deep wet etching in hydrofluoric acid, nitric acid, and acetic acid of cavities in a silicon wafer,” Jpn. J. Appl. Phys. 52(7R), 076503 (2013).
[Crossref]

Elwenspoek, M. C.

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, “Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings,” J. Electrochem. Soc. 153(9), C641–C647 (2006).
[Crossref]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Flagg, E. B.

Fortier, K. M.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Froehly, L.

Gao, B.

Garcia, S.

Gomez, V.

Gorecki, C.

Grazioso, F.

Han, C.-H.

C.-H. Han and E.-S. Kim, “Study of self-limiting etching behavior in wet isotropic etching of silicon,” Jpn. J. Appl. Phys. 37(Part 1, No. 12B), 6939–6941 (1998).
[Crossref]

Hänsch, T. W.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Hansen, O.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

Hinds, E. A.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

Hou, X.

Hughes, G. M.

Hümmer, T.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Hunger, D.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Irvine, W. T. M.

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81(4), 043814 (2010).
[Crossref]

Jarecki, R. L.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Jones, M.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

Kim, E.-S.

C.-H. Han and E.-S. Kim, “Study of self-limiting etching behavior in wet isotropic etching of silicon,” Jpn. J. Appl. Phys. 37(Part 1, No. 12B), 6939–6941 (1998).
[Crossref]

Kleckner, D.

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81(4), 043814 (2010).
[Crossref]

Kogelnik, H.

Kohlhaas, R.

Koukharenka, E.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

Kraft, M.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Laliotis, A.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

Larsen, K. P.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

Lawall, J. R.

Lewis, G.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

Li, C.

Li, T.

Long, R.

Loyd, T. K.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Mader, M.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

Muller, A.

Nakakura, C. Y.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Nieradko, L.

Oemrawsingh, S. S. R.

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81(4), 043814 (2010).
[Crossref]

Ott, K.

Ottevaere, H.

Ow, Y. S.

Päivänranta, B.

Pan, A.

Passilly, N.

Patton, B. R.

Pietarinen, J.

Powell, H.

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

Ravnkilde, J. T.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

Reichel, J.

K. Ott, S. Garcia, R. Kohlhaas, K. Schüppert, P. Rosenbusch, R. Long, and J. Reichel, “Millimeter-long fiber Fabry-Perot cavities,” Opt. Express 24(9), 9839–9853 (2016).
[Crossref] [PubMed]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Rosenbusch, P.

Schalko, J.

Schlederer, B.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

Schmid, U.

Schmiedmayer, J.

Schneider, M.

Schüppert, K.

Schwindt, P. D. D.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Si, J.

Sihai, C.

Z. Yifan, C. Sihai, S. Edmond, and A. Bosseboeuf, “Deep wet etching in hydrofluoric acid, nitric acid, and acetic acid of cavities in a silicon wafer,” Jpn. J. Appl. Phys. 52(7R), 076503 (2013).
[Crossref]

Smith, J. M.

Solomon, G. S.

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Stick, D. L.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Svetovoy, V. B.

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, “Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings,” J. Electrochem. Soc. 153(9), C641–C647 (2006).
[Crossref]

Thienpont, H.

Trupke, M.

C. Derntl, M. Schneider, J. Schalko, A. Bittner, J. Schmiedmayer, U. Schmid, and M. Trupke, “Arrays of open, independently tunable microcavities,” Opt. Express 22(18), 22111–22120 (2014).
[Crossref] [PubMed]

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Yifan, Z.

Z. Yifan, C. Sihai, S. Edmond, and A. Bosseboeuf, “Deep wet etching in hydrofluoric acid, nitric acid, and acetic acid of cavities in a silicon wafer,” Jpn. J. Appl. Phys. 52(7R), 076503 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small footprint,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

J. Electrochem. Soc. (1)

V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, “Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings,” J. Electrochem. Soc. 153(9), C641–C647 (2006).
[Crossref]

J. Micromech. Microeng. (3)

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873–882 (2005).
[Crossref]

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

Z. Moktadir, E. Koukharenka, M. Kraft, D. M. Bagnall, H. Powell, M. Jones, and E. A. Hinds, “Etching techniques for realizing optical micro-cavity atom traps on silicon,” J. Micromech. Microeng. 14(9), S82–S85 (2004).
[Crossref]

Jpn. J. Appl. Phys. (2)

Z. Yifan, C. Sihai, S. Edmond, and A. Bosseboeuf, “Deep wet etching in hydrofluoric acid, nitric acid, and acetic acid of cavities in a silicon wafer,” Jpn. J. Appl. Phys. 52(7R), 076503 (2013).
[Crossref]

C.-H. Han and E.-S. Kim, “Study of self-limiting etching behavior in wet isotropic etching of silicon,” Jpn. J. Appl. Phys. 37(Part 1, No. 12B), 6939–6941 (1998).
[Crossref]

New J. Phys. (2)

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17(5), 053051 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry–Perot cavity with high finesse,” New J. Phys. 12(6), 065038 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81(4), 043814 (2010).
[Crossref]

Other (1)

Certain commercial equipment, instruments, or materials are identified in this article in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The hemispherical optical microcavity. (a) Cross-sectional diagram of the microcavity and optical readout method. (b) Cross-sectional diagram showing the application of the microcavity to optomechanical sensing.

Fig. 2
Fig. 2

Calculated cavity beam waists, wf and wc, (a) and (b) respectively, as a function of cavity length, L, and aspect ratio, α, for λ = 1550 nm.

Fig. 3
Fig. 3

Micromirror fabrication process. (a) Process steps, and (b) experimental setup for the HNA etch.

Fig. 4
Fig. 4

Scanning electron micrographs of two concave silicon micromirrors. (a) Top view, D = 300 μm, etch time = 2 h. (b) Cross-sectional view, D = 200 μm, etch time = 2 h, α = 0.73.

Fig. 5
Fig. 5

Optical characterization of the micromirror surface. (a) A defect-free mirror surface, (b) a mirror surface with minor defects, and (c) a rough mirror surface with significant defects. Images on the left were taken with an optical microscope focused on the bottom of the mirror and the topographical images on the right were taken with an optical profilometer.

Fig. 6
Fig. 6

Fabrication yield as a function of aperture diameter and etch time.

Fig. 7
Fig. 7

Surface quality and roughness of a silicon micromirror measured with an optical profilometer. (a) Surface quality with polynomial fit, (b) surface roughness.

Fig. 8
Fig. 8

Micromirror depth, radius of curvature, and aspect ratio. (a) Depth, L, as a function of D, (b) radius of curvature, R, as function of D, and (c) aspect ratio, α, as a function of D where the two dashed lines represent the optimal aspect ratios for the flat and concave mirrors, α = 0.625 and α = 0.5, respectively.

Fig. 9
Fig. 9

Optical microscope images of etched silicon mirrors before Si3N4 aperture removal. Each image is from a different location on the etched wafer. Red arrows are vectors from the mirror center to the aperture center, indicating flow dependent formation of the mirrors.

Fig. 10
Fig. 10

Optical resonances for one FSR of an assembled hemispherical microcavity, where two fundamental modes and multiple higher modes are shown. Inset: A single fundamental resonance and a fit to a Lorentzian function.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w f = ( λ/π ) 1/2 L 1/2 ( 1α α ) 1/4
w c = ( λ/π ) 1/2 L 1/2 ( α α 2 ) 1/4

Metrics