Abstract

High precision surface processing has an unmet demand for picosecond pulses with arbitrary temporal profiles in radial polarization states and at high average powers. Here, simultaneous spatial and arbitrary temporal shaping of chirped 10 – 100 picoseconds pulses is demonstrated with an Yb-doped fiber laser system generating an output power of more than 10 W at 40 MHz repetition frequency. The closed-loop control algorithm carves the pulses using a commercial, rugged, and fiberized optical pulse shaper placed at the front end of the system and uses feedback from the output pulse shapes for optimization. Arbitrary complex temporal profiles were demonstrated using a dispersive Fourier transform based technique and limits set by the system were investigated. Pulse shaping in the spatial domain was accomplished using an S-waveplate, fabricated in-house, to change the linearly polarized fundamental mode into a doughnut mode with radial polarization. This was amplified in a final-stage few-mode large-mode area fiber amplifier. Placing both temporal and spatial shaping elements before the power-amplifier avoids complex and potentially lossy conversion of the spatial mode profile at the output and provides an efficient route for power-scaling. The use of properly oriented quarter- and half-wave plates, which have both low loss and high power handling capability, enabled the output to be set to pure radial or azimuthal polarization states. Using commercial off-the-shelf components, our technique is able to immediately enhance the versatility of ultrashort fiber laser systems for high precision material processing and other industrial applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber

J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, and K. Regelskis
Opt. Express 21(5) 5338-5345 (2013)

Monolithic fiber chirped pulse amplification system for millijoule femtosecond pulse generation at 1.55 µm

Xiang Peng, Kyungbum Kim, Michael Mielke, Stephen Jennings, Gordon Masor, Dave Stohl, Arturo Chavez-Pirson, Dan T. Nguyen, Dan Rhonehouse, Jie Zong, Dmitriy Churin, and N. Peyghambarian
Opt. Express 22(3) 2459-2464 (2014)

Combined Yb/Nd driver for optical parametric chirped pulse amplifiers

Kirilas Michailovas, Andrius Baltuska, Audrius Pugzlys, Valerijus Smilgevicius, Andrejus Michailovas, Audrius Zaukevicius, Rokas Danilevicius, Saulius Frankinas, and Nerijus Rusteika
Opt. Express 24(19) 22261-22271 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. M. Zhang, Y. Lai, W. Yuan, Y. P. Seah, P. P. Shum, X. Yu, and H. Wei, “Laser-assisted lateral optical fiber processing for selective infiltration,” Opt. Express 22(3), 2675–2680 (2014).
    [Crossref] [PubMed]
  2. A. G. Demir, K. Pangovski, W. O’Neill, and B. Previtali, “Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime,” Surf. Coat. Tech. 258, 240–248 (2014).
    [Crossref]
  3. B. M. Zhang, M. Liu, P. P. Shum, X. Li, and X. Cheng, “Design and fabrication of 100 kW peak power picosecond fiber laser for efficient laser marking and drilling,” in IEEE Photonics Conference (2015), pp. 70–71.
    [Crossref]
  4. M. Liu, B. M. Zhang, P. P. Shum, and X. Cheng, “Nanosecond pulse fiber laser blackening of aluminum alloy with alumina surface,” IEEE Photonics Technol. Lett. 28(23), 2701–2704 (2016).
    [Crossref]
  5. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  6. K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
    [Crossref]
  7. R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
    [Crossref]
  8. D. Lin, N. Baktash, M. Berendt, M. Beresna, P. G. Kazansky, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping,” Opt. Lett. 42(9), 1740–1743 (2017).
    [Crossref] [PubMed]
  9. X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
    [Crossref]
  10. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  11. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured Fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
    [Crossref]
  12. J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
    [Crossref]
  13. C. Guo, M. Nix, S. S. H. Yam, and S. He, “Picosecond and sub-picosecond flat-top pulse shaping using abrupt taper interferometers,” J. Lightwave Technol. 28(6), 876–881 (2010).
    [Crossref]
  14. Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
    [Crossref] [PubMed]
  15. A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris) 22(12), 1619–1628 (1987).
    [Crossref]
  16. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
    [Crossref] [PubMed]
  17. H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
    [Crossref]
  18. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
    [Crossref]
  19. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [Crossref]
  20. O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
    [Crossref]
  21. D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
    [Crossref]
  22. D. Lin, K. Xia, R. Li, X. Li, G. Li, K. Ueda, and J. Li, “Radially polarized and passively Q-switched fiber laser,” Opt. Lett. 35(21), 3574–3576 (2010).
    [Crossref] [PubMed]
  23. D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
    [Crossref] [PubMed]
  24. S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
    [Crossref] [PubMed]
  25. D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett. 35(13), 2290–2292 (2010).
    [Crossref] [PubMed]
  26. B. M. Zhang, Y. Feng, D. Lin, J. Price, S. Alam, J. Nilsson, P. Shum, D. Payne, and D. Richardson, “Radially polarised Yb-fiber MOPA producing 10 W output using SLM based pulse shaping for efficient generation of arbitrary shaped picosecond pulses,” in Lasers Congress 2016 (ASSL, LSC, LAC) (2016), paper ATh3A.3.
    [Crossref]
  27. J. Prawiharjo, N. K. Daga, R. Geng, J. H. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express 16(19), 15074–15089 (2008).
    [Crossref] [PubMed]
  28. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  29. Y. Xin, D. J. Richardson, and P. Petropoulos, “Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening,” IEEE Photonics Technol. Lett. 25(6), 543–545 (2013).
    [Crossref]
  30. J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
    [Crossref]
  31. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [Crossref]
  32. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
    [Crossref]
  33. J. S. Feehan, F. Ö. Ilday, W. S. Brocklesby, and J. H. V. Price, “Simulations and experiments showing the origin of multiwavelength mode locking in femtosecond, Yb-fiber lasers,” J. Opt. Soc. Am. B 33(8), 1668–1676 (2016).
    [Crossref]
  34. J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
    [Crossref]
  35. R. L. Fork, C. H. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12(7), 483–485 (1987).
    [Crossref] [PubMed]
  36. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23(4), 750–759 (2006).
    [Crossref]

2017 (2)

J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
[Crossref]

D. Lin, N. Baktash, M. Berendt, M. Beresna, P. G. Kazansky, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping,” Opt. Lett. 42(9), 1740–1743 (2017).
[Crossref] [PubMed]

2016 (2)

J. S. Feehan, F. Ö. Ilday, W. S. Brocklesby, and J. H. V. Price, “Simulations and experiments showing the origin of multiwavelength mode locking in femtosecond, Yb-fiber lasers,” J. Opt. Soc. Am. B 33(8), 1668–1676 (2016).
[Crossref]

M. Liu, B. M. Zhang, P. P. Shum, and X. Cheng, “Nanosecond pulse fiber laser blackening of aluminum alloy with alumina surface,” IEEE Photonics Technol. Lett. 28(23), 2701–2704 (2016).
[Crossref]

2014 (5)

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
[Crossref]

A. G. Demir, K. Pangovski, W. O’Neill, and B. Previtali, “Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime,” Surf. Coat. Tech. 258, 240–248 (2014).
[Crossref]

B. M. Zhang, Y. Lai, W. Yuan, Y. P. Seah, P. P. Shum, X. Yu, and H. Wei, “Laser-assisted lateral optical fiber processing for selective infiltration,” Opt. Express 22(3), 2675–2680 (2014).
[Crossref] [PubMed]

S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
[Crossref] [PubMed]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Xin, D. J. Richardson, and P. Petropoulos, “Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening,” IEEE Photonics Technol. Lett. 25(6), 543–545 (2013).
[Crossref]

2012 (2)

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

2011 (3)

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

2010 (5)

2009 (1)

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

2008 (1)

2007 (2)

Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
[Crossref] [PubMed]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

2006 (1)

2005 (1)

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

2001 (1)

2000 (3)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

1987 (2)

R. L. Fork, C. H. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12(7), 483–485 (1987).
[Crossref] [PubMed]

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris) 22(12), 1619–1628 (1987).
[Crossref]

Ahmed, M. A.

Ahn, T.-J.

Alam, S. U.

D. Lin, N. Baktash, M. Berendt, M. Beresna, P. G. Kazansky, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping,” Opt. Lett. 42(9), 1740–1743 (2017).
[Crossref] [PubMed]

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

Allegre, O. J.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Asghari, M. H.

Audouard, E.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Azana, J.

J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

Azaña, J.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
[Crossref] [PubMed]

Baktash, N.

Becker, P. C.

Berendt, M.

Beresna, M.

Breitling, D.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Brocklesby, W. S.

J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
[Crossref]

J. S. Feehan, F. Ö. Ilday, W. S. Brocklesby, and J. H. V. Price, “Simulations and experiments showing the origin of multiwavelength mode locking in femtosecond, Yb-fiber lasers,” J. Opt. Soc. Am. B 33(8), 1668–1676 (2016).
[Crossref]

Butcher, T. J.

J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
[Crossref]

Chen, K. K.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

Cheng, X.

M. Liu, B. M. Zhang, P. P. Shum, and X. Cheng, “Nanosecond pulse fiber laser blackening of aluminum alloy with alumina surface,” IEEE Photonics Technol. Lett. 28(23), 2701–2704 (2016).
[Crossref]

B. M. Zhang, M. Liu, P. P. Shum, X. Li, and X. Cheng, “Design and fabrication of 100 kW peak power picosecond fiber laser for efficient laser marking and drilling,” in IEEE Photonics Conference (2015), pp. 70–71.
[Crossref]

Clarkson, W. A.

Clausen, A. T.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Cockburn, A.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
[Crossref]

Cruz, C. H.

Cruz, J. M. D.

Daga, N. K.

Daniel, J. M. O.

Dantus, M.

Dausinger, F.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Dearden, G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Dejiao Lin,

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
[Crossref]

Demir, A. G.

A. G. Demir, K. Pangovski, W. O’Neill, and B. Previtali, “Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime,” Surf. Coat. Tech. 258, 240–248 (2014).
[Crossref]

Edwardson, S. P.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Ellis, A. D.

Feehan, J. S.

J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
[Crossref]

J. S. Feehan, F. Ö. Ilday, W. S. Brocklesby, and J. H. V. Price, “Simulations and experiments showing the origin of multiwavelength mode locking in femtosecond, Yb-fiber lasers,” J. Opt. Soc. Am. B 33(8), 1668–1676 (2016).
[Crossref]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Flannagan, J. C.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

Föhl, C.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Fork, R. L.

Frey, J. G.

J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
[Crossref]

Galili, M.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Gecevicius, M.

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Geddes, V.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

Geng, R.

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Graf, T.

Gunn, J. M.

Guo, C.

Hanna, D. C.

Hayes, J. R.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

He, S.

Heritage, J. P.

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris) 22(12), 1619–1628 (1987).
[Crossref]

Hu, H.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Ibsen, M.

Ilday, F. Ö.

Ingram, S.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

Jeppesen, P.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Kamlage, G.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

Kanazawa, S.

Kazansky, P. G.

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

König, K.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Kozawa, Y.

Kraus, M.

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Lai, Y.

Le Harzic, R.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Li, G.

Li, J.

Li, R.

Li, X.

Lin, D.

Liu, J. S.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Liu, M.

M. Liu, B. M. Zhang, P. P. Shum, and X. Cheng, “Nanosecond pulse fiber laser blackening of aluminum alloy with alumina surface,” IEEE Photonics Technol. Lett. 28(23), 2701–2704 (2016).
[Crossref]

B. M. Zhang, M. Liu, P. P. Shum, X. Li, and X. Cheng, “Design and fabrication of 100 kW peak power picosecond fiber laser for efficient laser marking and drilling,” in IEEE Photonics Conference (2015), pp. 70–71.
[Crossref]

Lozovoy, V. V.

Malinowski, A.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Michalowski, A.

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010).
[Crossref] [PubMed]

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Momma, C.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

Mulvad, H. C. H.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Muriel, M. A.

J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Nilsson, J.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

Nix, M.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Nolte, S.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

Norman, S.

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

O’Neill, W.

A. G. Demir, K. Pangovski, W. O’Neill, and B. Previtali, “Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime,” Surf. Coat. Tech. 258, 240–248 (2014).
[Crossref]

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
[Crossref]

Ostendorf, A.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

Oxenløwe, L. K.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Palushani, E.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Pangovski, K.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
[Crossref]

A. G. Demir, K. Pangovski, W. O’Neill, and B. Previtali, “Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime,” Surf. Coat. Tech. 258, 240–248 (2014).
[Crossref]

Park, Y.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
[Crossref] [PubMed]

Perrie, W.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Petropoulos, P.

Y. Xin, D. J. Richardson, and P. Petropoulos, “Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening,” IEEE Photonics Technol. Lett. 25(6), 543–545 (2013).
[Crossref]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured Fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
[Crossref]

Prawiharjo, J.

Previtali, B.

A. G. Demir, K. Pangovski, W. O’Neill, and B. Previtali, “Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime,” Surf. Coat. Tech. 258, 240–248 (2014).
[Crossref]

Price, J. H.

Price, J. H. V.

J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
[Crossref]

J. S. Feehan, F. Ö. Ilday, W. S. Brocklesby, and J. H. V. Price, “Simulations and experiments showing the origin of multiwavelength mode locking in femtosecond, Yb-fiber lasers,” J. Opt. Soc. Am. B 33(8), 1668–1676 (2016).
[Crossref]

Richardson, D.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
[Crossref]

Richardson, D. J.

J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
[Crossref]

D. Lin, N. Baktash, M. Berendt, M. Beresna, P. G. Kazansky, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping,” Opt. Lett. 42(9), 1740–1743 (2017).
[Crossref] [PubMed]

Y. Xin, D. J. Richardson, and P. Petropoulos, “Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening,” IEEE Photonics Technol. Lett. 25(6), 543–545 (2013).
[Crossref]

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

J. Prawiharjo, N. K. Daga, R. Geng, J. H. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express 16(19), 15074–15089 (2008).
[Crossref] [PubMed]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured Fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
[Crossref]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Sato, S.

Seah, Y. P.

Shank, C. V.

Shepherd, D. P.

Shum, P. P.

M. Liu, B. M. Zhang, P. P. Shum, and X. Cheng, “Nanosecond pulse fiber laser blackening of aluminum alloy with alumina surface,” IEEE Photonics Technol. Lett. 28(23), 2701–2704 (2016).
[Crossref]

B. M. Zhang, Y. Lai, W. Yuan, Y. P. Seah, P. P. Shum, X. Yu, and H. Wei, “Laser-assisted lateral optical fiber processing for selective infiltration,” Opt. Express 22(3), 2675–2680 (2014).
[Crossref] [PubMed]

B. M. Zhang, M. Liu, P. P. Shum, X. Li, and X. Cheng, “Design and fabrication of 100 kW peak power picosecond fiber laser for efficient laser marking and drilling,” in IEEE Photonics Conference (2015), pp. 70–71.
[Crossref]

Slavík, R.

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

Sommer, S.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Sparkes, M.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
[Crossref]

Tönshoff, H. K.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

Ueda, K.

Voss, A.

Walter, D.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Wang, X. D.

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Watkins, K. G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

Weber, R.

Wei, H.

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris) 22(12), 1619–1628 (1987).
[Crossref]

Xia, K.

Xin, Y.

Y. Xin, D. J. Richardson, and P. Petropoulos, “Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening,” IEEE Photonics Technol. Lett. 25(6), 543–545 (2013).
[Crossref]

Xu, B.

Yam, S. S. H.

Yu, X.

Yuan, W.

Zhang, B. M.

M. Liu, B. M. Zhang, P. P. Shum, and X. Cheng, “Nanosecond pulse fiber laser blackening of aluminum alloy with alumina surface,” IEEE Photonics Technol. Lett. 28(23), 2701–2704 (2016).
[Crossref]

B. M. Zhang, Y. Lai, W. Yuan, Y. P. Seah, P. P. Shum, X. Yu, and H. Wei, “Laser-assisted lateral optical fiber processing for selective infiltration,” Opt. Express 22(3), 2675–2680 (2014).
[Crossref] [PubMed]

B. M. Zhang, M. Liu, P. P. Shum, X. Li, and X. Cheng, “Design and fabrication of 100 kW peak power picosecond fiber laser for efficient laser marking and drilling,” in IEEE Photonics Conference (2015), pp. 70–71.
[Crossref]

Appl. Phys. B (1)

J. S. Feehan, J. H. V. Price, T. J. Butcher, W. S. Brocklesby, J. G. Frey, and D. J. Richardson, “Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber,” Appl. Phys. B 123(1), 43 (2017).
[Crossref]

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Azana and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, Dejiao Lin, and D. Richardson, “Control of material transport through pulse shape manipulation—a development toward designer pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 51–63 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Liu, B. M. Zhang, P. P. Shum, and X. Cheng, “Nanosecond pulse fiber laser blackening of aluminum alloy with alumina surface,” IEEE Photonics Technol. Lett. 28(23), 2701–2704 (2016).
[Crossref]

Y. Xin, D. J. Richardson, and P. Petropoulos, “Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening,” IEEE Photonics Technol. Lett. 25(6), 543–545 (2013).
[Crossref]

Int. J. Opt. (1)

J. Azaña, L. K. Oxenløwe, E. Palushani, R. Slavík, M. Galili, H. C. H. Mulvad, H. Hu, Y. Park, A. T. Clausen, and P. Jeppesen, “In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s,” Int. J. Opt. 2012, 1–16 (2012).
[Crossref]

J. Laser Appl. (1)

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14(8), 085601 (2012).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. D Appl. Phys. (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Laser Phys. Lett. (1)

D. Lin, S. U. Alam, A. Malinowski, K. K. Chen, J. R. Hayes, J. C. Flannagan, V. Geddes, J. Nilsson, S. Ingram, S. Norman, and D. J. Richardson, “Temporally and spatially shaped fully-fiberized ytterbium-doped pulsed MOPA,” Laser Phys. Lett. 8(10), 747–753 (2011).
[Crossref]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

X. D. Wang, A. Michalowski, D. Walter, S. Sommer, M. Kraus, J. S. Liu, and F. Dausinger, “Laser drilling of stainless steel with nanosecond double-pulse,” Opt. Laser Technol. 41(2), 148–153 (2009).
[Crossref]

Opt. Lett. (6)

Rev. Phys. Appl. (Paris) (1)

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris) 22(12), 1619–1628 (1987).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Surf. Coat. Tech. (1)

A. G. Demir, K. Pangovski, W. O’Neill, and B. Previtali, “Laser micromachining of TiN coatings with variable pulse durations and shapes in ns regime,” Surf. Coat. Tech. 258, 240–248 (2014).
[Crossref]

Other (2)

B. M. Zhang, M. Liu, P. P. Shum, X. Li, and X. Cheng, “Design and fabrication of 100 kW peak power picosecond fiber laser for efficient laser marking and drilling,” in IEEE Photonics Conference (2015), pp. 70–71.
[Crossref]

B. M. Zhang, Y. Feng, D. Lin, J. Price, S. Alam, J. Nilsson, P. Shum, D. Payne, and D. Richardson, “Radially polarised Yb-fiber MOPA producing 10 W output using SLM based pulse shaping for efficient generation of arbitrary shaped picosecond pulses,” in Lasers Congress 2016 (ASSL, LSC, LAC) (2016), paper ATh3A.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the picosecond Yb-fiber MOPA laser system.
Fig. 2
Fig. 2 Flowchart for the control algorithm.
Fig. 3
Fig. 3 Feed-back loop validation results at the output of the CPA system. (a) Progressively improved square spectra for increasing number of iterations. (b) Spectrum shaping results for other pulse shapes. (c) Pulse shape calculated from the measured spectrum. (d) Comparison between the measured autocorrelation trace and autocorrelation trace calculated from the pulse shape in (c).
Fig. 4
Fig. 4 Temporal shaping results after the final ring-mode fiber amplifier (a) Spectral results for different pulse shapes. (b) Power curve for the final amplifier. (c) Pulse shape calculated from the measured spectrum. (d) Comparison between the measured autocorrelation trace and autocorrelation trace calculated from the pulse shape in (c).
Fig. 5
Fig. 5 Doughnut-shaped beam intensity profiles with an output power of 10 W (a) TM01 mode. (b) TE01 mode. The inset: the mode profiles observed after passing through a polarizer oriented in the directions indicated by the white arrows.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ >> Δ τ 0 2 8π TB P 2 π 2Δ ω 2
φ( ω )= φ ˜ ( ω )+ΔL[ β 2 ( ω ω 0 ) 2 2 + β 3 ( ω ω 0 ) 3 6 + β 4 ( ω ω 0 ) 4 24 + β 5 ( ω ω 0 ) 5 120 ]
E( t )= E( ω ) e i φ( ω ) e iωt dω
I(t)=E(t) E * (t)
A( τ )= I( t+τ )I( t )dt

Metrics