Abstract

We investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damage properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence
Opt. Express 25(13) 15161-15178 (2017)

Influence of incidence angle and polarization state on the damage site characteristics of fused silica

Bin Ma, Yanyun Zhang, Hongping Ma, Hongfei Jiao, Xinbin Cheng, and Zhanshan Wang
Appl. Opt. 53(4) A96-A102 (2014)

Wavelength dependence of the mechanisms governing the formation of nanosecond laser-induced damage in fused silica

Maxime Chambonneau, Jean-Luc Rullier, Pierre Grua, and Laurent Lamaignère
Opt. Express 26(17) 21819-21830 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
    [Crossref]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
    [Crossref]
  3. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quant. Electron. 33, 1706–1716 (1997).
    [Crossref]
  4. J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).
  5. S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nature Photon. 7, 775–782 (2013).
    [Crossref]
  6. C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa),” Physics of Plasmas 21, 056706 (2014).
    [Crossref]
  7. M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
    [Crossref]
  8. K. R. Manes, M. L. Spaeth, J. J. Adams, and M. W. Bowers, “Damage Mechanisms Avoided or Managed for NIF Large Optics,” Fusion Sci. Technol. 69, 146–249 (2016).
    [Crossref]
  9. M. L. Spaeth, P. J. Wegner, T. I. Suratwala, and M. C. Nostrand, “Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold,” Fusion Sci. Technol. 69, 265–294 (2016).
    [Crossref]
  10. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
    [Crossref]
  11. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22, 5839 (2014).
    [Crossref] [PubMed]
  12. C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
    [Crossref]
  13. J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).
  14. D. A. Alessi, C. W. Carr, R. P. Hackel, R. A. Negres, K. Stanion, J. E. Fair, D. A. Cross, J. Nissen, R. Luthi, G. Guss, J. A. Britten, W. H. Gourdin, and C. Haefner, “Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum,” Opt. Express 23, 15532 (2015).
    [Crossref] [PubMed]
  15. R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
    [Crossref]
  16. B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
    [Crossref] [PubMed]
  17. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
    [Crossref] [PubMed]
  18. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2),” Opt. Express 20, 11561–11573 (2012).
    [Crossref] [PubMed]
  19. C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
    [Crossref]
  20. D. A. Cross and C. W. Carr, “Analysis of 1ÏL’ bulk laser damage in KDP,” Appl. Opt. 50, D7–D11 (2011).
    [Crossref] [PubMed]
  21. S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).
  22. C. Carr, J. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
    [Crossref]
  23. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
    [Crossref]
  24. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
    [Crossref]
  25. D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102–15115 (1992).
    [Crossref]
  26. P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
    [Crossref] [PubMed]
  27. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394 (1999).
    [Crossref]
  28. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883 (1999).
    [Crossref]
  29. S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials,” Opt. Eng. 28, 281039 (1989).
    [Crossref]
  30. M. Sun, J. Zhu, and Z. Lin, “Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser,” Opt. Eng. 56, 011026 (2016).
    [Crossref]
  31. A. Mouskeftaras, S. Guizard, N. Fedorov, and S. Klimentov, “Mechanisms of femtosecond laser ablation of dielectrics revealed by double pumpâǍŞprobe ¸ experiment,” Appl. Phys. A 110, 709–715 (2012).
    [Crossref]
  32. G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys. 111, 093106 (2012).
    [Crossref]
  33. F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
    [Crossref] [PubMed]
  34. R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.
  35. I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
    [Crossref]
  36. I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, and C. L. Blanc, “Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4,” Opt. Lett. 30, 1036–1038 (2005).
    [Crossref] [PubMed]
  37. I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, “Metallic burn paper; used for in situ characterization of laser beam properties,” Appl. Opt. 55, 3131–3139 (2016).
    [Crossref] [PubMed]
  38. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47, 4812–4832 (2008).
    [Crossref] [PubMed]
  39. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
    [Crossref]
  40. L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).
    [Crossref] [PubMed]
  41. L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
    [Crossref]
  42. H. Wang, H. Qi, J. Zhao, B. Wang, and J. Shao, “Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation,” Opt. Commun. 387, 214–222 (2017).
    [Crossref]
  43. A. Mouskeftaras, “Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials,” Theses, Ecole Polytechnique X (2013).

2017 (1)

H. Wang, H. Qi, J. Zhao, B. Wang, and J. Shao, “Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation,” Opt. Commun. 387, 214–222 (2017).
[Crossref]

2016 (5)

K. R. Manes, M. L. Spaeth, J. J. Adams, and M. W. Bowers, “Damage Mechanisms Avoided or Managed for NIF Large Optics,” Fusion Sci. Technol. 69, 146–249 (2016).
[Crossref]

M. L. Spaeth, P. J. Wegner, T. I. Suratwala, and M. C. Nostrand, “Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold,” Fusion Sci. Technol. 69, 265–294 (2016).
[Crossref]

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

M. Sun, J. Zhu, and Z. Lin, “Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser,” Opt. Eng. 56, 011026 (2016).
[Crossref]

I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, “Metallic burn paper; used for in situ characterization of laser beam properties,” Appl. Opt. 55, 3131–3139 (2016).
[Crossref] [PubMed]

2015 (4)

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

D. A. Alessi, C. W. Carr, R. P. Hackel, R. A. Negres, K. Stanion, J. E. Fair, D. A. Cross, J. Nissen, R. Luthi, G. Guss, J. A. Britten, W. H. Gourdin, and C. Haefner, “Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum,” Opt. Express 23, 15532 (2015).
[Crossref] [PubMed]

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

2014 (2)

C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa),” Physics of Plasmas 21, 056706 (2014).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22, 5839 (2014).
[Crossref] [PubMed]

2013 (1)

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nature Photon. 7, 775–782 (2013).
[Crossref]

2012 (3)

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2),” Opt. Express 20, 11561–11573 (2012).
[Crossref] [PubMed]

A. Mouskeftaras, S. Guizard, N. Fedorov, and S. Klimentov, “Mechanisms of femtosecond laser ablation of dielectrics revealed by double pumpâǍŞprobe ¸ experiment,” Appl. Phys. A 110, 709–715 (2012).
[Crossref]

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys. 111, 093106 (2012).
[Crossref]

2011 (3)

D. A. Cross and C. W. Carr, “Analysis of 1ÏL’ bulk laser damage in KDP,” Appl. Opt. 50, D7–D11 (2011).
[Crossref] [PubMed]

L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

2010 (3)

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

C. Carr, J. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

2008 (3)

A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47, 4812–4832 (2008).
[Crossref] [PubMed]

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

2006 (1)

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[Crossref]

2005 (3)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, and C. L. Blanc, “Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4,” Opt. Lett. 30, 1036–1038 (2005).
[Crossref] [PubMed]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

2004 (2)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

1999 (2)

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394 (1999).
[Crossref]

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883 (1999).
[Crossref]

1997 (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quant. Electron. 33, 1706–1716 (1997).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

1995 (1)

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

1994 (1)

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

1992 (1)

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102–15115 (1992).
[Crossref]

1989 (1)

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

ÅaÄ?iuka, M.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Adams, J. J.

K. R. Manes, M. L. Spaeth, J. J. Adams, and M. W. Bowers, “Damage Mechanisms Avoided or Managed for NIF Large Optics,” Fusion Sci. Technol. 69, 146–249 (2016).
[Crossref]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[Crossref]

Albert, F.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Alessi, D. A.

D. A. Alessi, C. W. Carr, R. P. Hackel, R. A. Negres, K. Stanion, J. E. Fair, D. A. Cross, J. Nissen, R. Luthi, G. Guss, J. A. Britten, W. H. Gourdin, and C. Haefner, “Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum,” Opt. Express 23, 15532 (2015).
[Crossref] [PubMed]

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

Allen, G. S.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Antonetti, A.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Arnold, D.

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102–15115 (1992).
[Crossref]

Arnold, P.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Audebert, P.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

Backus, S.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883 (1999).
[Crossref]

Barty, C. P. J.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, and C. L. Blanc, “Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4,” Opt. Lett. 30, 1036–1038 (2005).
[Crossref] [PubMed]

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Bass, I.

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

Bass, I. L.

BataviÄ?iÅntÄU, G.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Baxamusa, S.

Bayramian, A. J.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Beach, R. J.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Benedetti, C.

C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa),” Physics of Plasmas 21, 056706 (2014).
[Crossref]

Bigongiari, A.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Blanc, C. L.

Boley, C. D.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Bonanno, R. E.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Borghesi, M.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Bowers, M. W.

K. R. Manes, M. L. Spaeth, J. J. Adams, and M. W. Bowers, “Damage Mechanisms Avoided or Managed for NIF Large Optics,” Fusion Sci. Technol. 69, 146–249 (2016).
[Crossref]

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Brewer, W.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Britten, J.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Britten, J. A.

Brown, C.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

Brown, C. G.

Brunton, G.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Bude, J.

Bude, J. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2),” Opt. Express 20, 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

Budge, T. S.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Bulanov, S. V.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Carr, C.

C. Carr, J. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

Carr, C. W.

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

D. A. Alessi, C. W. Carr, R. P. Hackel, R. A. Negres, K. Stanion, J. E. Fair, D. A. Cross, J. Nissen, R. Luthi, G. Guss, J. A. Britten, W. H. Gourdin, and C. Haefner, “Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum,” Opt. Express 23, 15532 (2015).
[Crossref] [PubMed]

D. A. Cross and C. W. Carr, “Analysis of 1ÏL’ bulk laser damage in KDP,” Appl. Opt. 50, D7–D11 (2011).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[Crossref]

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

Carr, W.

Cartier, E.

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102–15115 (1992).
[Crossref]

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Christensen, K.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Clapp, B.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Clark, B.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Commandre, M.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).
[Crossref] [PubMed]

Crane, J. K.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Cross, D.

Cross, D. A.

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

D. A. Alessi, C. W. Carr, R. P. Hackel, R. A. Negres, K. Stanion, J. E. Fair, D. A. Cross, J. Nissen, R. Luthi, G. Guss, J. A. Britten, W. H. Gourdin, and C. Haefner, “Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum,” Opt. Express 23, 15532 (2015).
[Crossref] [PubMed]

D. A. Cross and C. W. Carr, “Analysis of 1ÏL’ bulk laser damage in KDP,” Appl. Opt. 50, D7–D11 (2011).
[Crossref] [PubMed]

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

Daguzan, P.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Danson, C.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Dawson, J.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Dawson, J. W.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

DeMange, P.

C. Carr, J. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

Demos, S. G.

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys. 111, 093106 (2012).
[Crossref]

Di Nicola, J. M.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Do, B. T.

Dos Santos, A.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Douti, D.-B.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Drachenberg, D. R.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quant. Electron. 33, 1706–1716 (1997).
[Crossref]

Duchateau, G.

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys. 111, 093106 (2012).
[Crossref]

Ebbers, C. A.

I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, and C. L. Blanc, “Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4,” Opt. Lett. 30, 1036–1038 (2005).
[Crossref] [PubMed]

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Erbert, G.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Esarey, E.

C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa),” Physics of Plasmas 21, 056706 (2014).
[Crossref]

Fair, J. E.

Fedorov, N.

A. Mouskeftaras, S. Guizard, N. Fedorov, and S. Klimentov, “Mechanisms of femtosecond laser ablation of dielectrics revealed by double pumpâǍŞprobe ¸ experiment,” Appl. Phys. A 110, 709–715 (2012).
[Crossref]

Feigenbaum, E.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Feit, M.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Feit, M. D.

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys. 111, 093106 (2012).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2),” Opt. Express 20, 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Fochs, S.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Forget, N.

Fuchs, J.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Gallais, L.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

Gauthier, J. C.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Gauthir, J.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Geindre, J.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Gibson, G. N.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394 (1999).
[Crossref]

Gourdin, W. H.

Guizard, S.

A. Mouskeftaras, S. Guizard, N. Fedorov, and S. Klimentov, “Mechanisms of femtosecond laser ablation of dielectrics revealed by double pumpâǍŞprobe ¸ experiment,” Appl. Phys. A 110, 709–715 (2012).
[Crossref]

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Guss, G.

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, “Metallic burn paper; used for in situ characterization of laser beam properties,” Appl. Opt. 55, 3131–3139 (2016).
[Crossref] [PubMed]

D. A. Alessi, C. W. Carr, R. P. Hackel, R. A. Negres, K. Stanion, J. E. Fair, D. A. Cross, J. Nissen, R. Luthi, G. Guss, J. A. Britten, W. H. Gourdin, and C. Haefner, “Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum,” Opt. Express 23, 15532 (2015).
[Crossref] [PubMed]

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

Hackel, R.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Hackel, R. P.

Haefner, C.

D. A. Alessi, C. W. Carr, R. P. Hackel, R. A. Negres, K. Stanion, J. E. Fair, D. A. Cross, J. Nissen, R. Luthi, G. Guss, J. A. Britten, W. H. Gourdin, and C. Haefner, “Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum,” Opt. Express 23, 15532 (2015).
[Crossref] [PubMed]

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Haefner, L. C.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Halpin, J.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Hamonioux, G.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Hartouni, E. P.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Heebner, J. E.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Hermann, M.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Hermann, M. R.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Hillier, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Homoelle, D.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Hooker, S. M.

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nature Photon. 7, 775–782 (2013).
[Crossref]

Hopps, N.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Jarboe, J. A.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Jasapara, J. C.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Jeskevic, M.

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Jovanovic, I.

I. Jovanovic, C. G. Brown, C. A. Ebbers, C. P. J. Barty, N. Forget, and C. L. Blanc, “Generation of high-contrast millijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4,” Opt. Lett. 30, 1036–1038 (2005).
[Crossref] [PubMed]

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

Kanz, K. V.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Kapteyn, H.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883 (1999).
[Crossref]

Kar, S.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Kautek, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Klimentov, S.

A. Mouskeftaras, S. Guizard, N. Fedorov, and S. Klimentov, “Mechanisms of femtosecond laser ablation of dielectrics revealed by double pumpâǍŞprobe ¸ experiment,” Appl. Phys. A 110, 709–715 (2012).
[Crossref]

Krastev, K.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Laurence, T.

Laurence, T. A.

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2),” Opt. Express 20, 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

Lawson, J. K.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Leemans, W. P.

C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa),” Physics of Plasmas 21, 056706 (2014).
[Crossref]

Li, M.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394 (1999).
[Crossref]

Lin, Z.

M. Sun, J. Zhu, and Z. Lin, “Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser,” Opt. Eng. 56, 011026 (2016).
[Crossref]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quant. Electron. 33, 1706–1716 (1997).
[Crossref]

Lowdermilk, W. H.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Lowe-Webb, R.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Luthi, R.

Ly, S.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2),” Opt. Express 20, 11561–11573 (2012).
[Crossref] [PubMed]

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

Macchi, A.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Mackinnon, A. J.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Manes, K. R.

K. R. Manes, M. L. Spaeth, J. J. Adams, and M. W. Bowers, “Damage Mechanisms Avoided or Managed for NIF Large Optics,” Fusion Sci. Technol. 69, 146–249 (2016).
[Crossref]

Mangote, B.

Martin, P.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Martin, S.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

McCandless, K.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

McHale, B.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Melninkaitis, A.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).
[Crossref] [PubMed]

Menapace, J.

Menon, S.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394 (1999).
[Crossref]

Mero, M.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Messerly, M. J.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Miller, P.

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

Mirauskas, J.

Molander, W.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

Monticelli, M.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

Mourou, G.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883 (1999).
[Crossref]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quant. Electron. 33, 1706–1716 (1997).
[Crossref]

Mouskeftaras, A.

A. Mouskeftaras, S. Guizard, N. Fedorov, and S. Klimentov, “Mechanisms of femtosecond laser ablation of dielectrics revealed by double pumpâǍŞprobe ¸ experiment,” Appl. Phys. A 110, 709–715 (2012).
[Crossref]

A. Mouskeftaras, “Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials,” Theses, Ecole Polytechnique X (2013).

Murnane, M.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883 (1999).
[Crossref]

Neely, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Negres, R. A.

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

I. L. Bass, R. A. Negres, K. Stanion, G. Guss, and J. Bude, “Metallic burn paper; used for in situ characterization of laser beam properties,” Appl. Opt. 55, 3131–3139 (2016).
[Crossref] [PubMed]

D. A. Alessi, C. W. Carr, R. P. Hackel, R. A. Negres, K. Stanion, J. E. Fair, D. A. Cross, J. Nissen, R. Luthi, G. Guss, J. A. Britten, W. H. Gourdin, and C. Haefner, “Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum,” Opt. Express 23, 15532 (2015).
[Crossref] [PubMed]

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

Nibarger, J. P.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394 (1999).
[Crossref]

Nielsen, N.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

Nissen, J.

Nissen, J. D.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

Nostrand, M. C.

M. L. Spaeth, P. J. Wegner, T. I. Suratwala, and M. C. Nostrand, “Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold,” Fusion Sci. Technol. 69, 265–294 (2016).
[Crossref]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[Crossref]

Pax, P. H.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Pelz, L. J.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Pennington, D.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

Perry, M.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Petite, G.

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

Pham, P. P.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Phan, H.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Phan, H. H.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Prantil, M. A.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Pupka, E.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Qi, H.

H. Wang, H. Qi, J. Zhao, B. Wang, and J. Shao, “Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation,” Opt. Commun. 387, 214–222 (2017).
[Crossref]

Rehak, M. L.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Rever, M. A.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Rigatti, A.

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

Ristau, D.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Romagnani, L.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Rubenchik, A.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Rudolph, W.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

Rushford, M. C.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Sacks, R. A.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Schroeder, C. B.

C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa),” Physics of Plasmas 21, 056706 (2014).
[Crossref]

Shao, J.

H. Wang, H. Qi, J. Zhao, B. Wang, and J. Shao, “Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation,” Opt. Commun. 387, 214–222 (2017).
[Crossref]

Shaw, B.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Shaw, M.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Shen, N.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22, 5839 (2014).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2),” Opt. Express 20, 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

Shen, X.-A.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Shore, B.

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Shverdin, M.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Siders, C. W.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Sigurdsson, R.

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Sirutkaitis, V.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).
[Crossref] [PubMed]

Smalakys, L.

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Smauley, D.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Smith, A. V.

Smith, L. K.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Spaeth, M. L.

K. R. Manes, M. L. Spaeth, J. J. Adams, and M. W. Bowers, “Damage Mechanisms Avoided or Managed for NIF Large Optics,” Fusion Sci. Technol. 69, 146–249 (2016).
[Crossref]

M. L. Spaeth, P. J. Wegner, T. I. Suratwala, and M. C. Nostrand, “Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold,” Fusion Sci. Technol. 69, 265–294 (2016).
[Crossref]

Speck, R.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Spinka, T. M.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Sridharan, A. K.

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

Stanion, K.

Stanion, K. A.

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

Starke, K.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Steele, W.

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

Stolz, C.

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

Stolz, C. J.

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

Stuart, B.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

Sun, M.

M. Sun, J. Zhu, and Z. Lin, “Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser,” Opt. Eng. 56, 011026 (2016).
[Crossref]

Suratwala, T.

Suratwala, T. I.

M. L. Spaeth, P. J. Wegner, T. I. Suratwala, and M. C. Nostrand, “Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold,” Fusion Sci. Technol. 69, 265–294 (2016).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

Tien, A.-C.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883 (1999).
[Crossref]

Tietbohl, G.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Toncian, T.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Wang, B.

H. Wang, H. Qi, J. Zhao, B. Wang, and J. Shao, “Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation,” Opt. Commun. 387, 214–222 (2017).
[Crossref]

Wang, H.

H. Wang, H. Qi, J. Zhao, B. Wang, and J. Shao, “Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation,” Opt. Commun. 387, 214–222 (2017).
[Crossref]

Wattellier, B.

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

Wegner, P. J.

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

M. L. Spaeth, P. J. Wegner, T. I. Suratwala, and M. C. Nostrand, “Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold,” Fusion Sci. Technol. 69, 265–294 (2016).
[Crossref]

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Widmayer, C.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Willi, O.

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Wong, L.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[Crossref] [PubMed]

Yang, S. T.

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Zerrad, M.

Zhao, J.

H. Wang, H. Qi, J. Zhao, B. Wang, and J. Shao, “Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation,” Opt. Commun. 387, 214–222 (2017).
[Crossref]

Zhu, J.

M. Sun, J. Zhu, and Z. Lin, “Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser,” Opt. Eng. 56, 011026 (2016).
[Crossref]

âAOJ. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” âǍŐJ. Am. Ceram. Soc. 94, 416–428 (2011).
[Crossref]

âAOJ. Phys. Conf. Ser. (1)

C. Haefner, J. E. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, K. V. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, B. Clark, M. J. Messerly, J. D. Nissen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Performance measurements of the injection laser system configured for picosecond scale advanced radiographic capability,” âǍŐJ. Phys. Conf. Ser. 244, 032005 (2010).
[Crossref]

Appl. Opt. (4)

Appl. Phys. A (1)

A. Mouskeftaras, S. Guizard, N. Fedorov, and S. Klimentov, “Mechanisms of femtosecond laser ablation of dielectrics revealed by double pumpâǍŞprobe ¸ experiment,” Appl. Phys. A 110, 709–715 (2012).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

Fusion Sci. Technol. (2)

K. R. Manes, M. L. Spaeth, J. J. Adams, and M. W. Bowers, “Damage Mechanisms Avoided or Managed for NIF Large Optics,” Fusion Sci. Technol. 69, 146–249 (2016).
[Crossref]

M. L. Spaeth, P. J. Wegner, T. I. Suratwala, and M. C. Nostrand, “Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold,” Fusion Sci. Technol. 69, 265–294 (2016).
[Crossref]

High Power Laser Science and Engineering (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

IEEE J. Quant. Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quant. Electron. 33, 1706–1716 (1997).
[Crossref]

J. Appl. Phys. (2)

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys. 111, 093106 (2012).
[Crossref]

L. Gallais, D.-B. Douti, M. Commandre, G. BataviÄŊiÅńtÄŮ, E. Pupka, M. ÅăÄŊiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Meas. Sci. Technol. (1)

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17, 1958–1962 (2006).
[Crossref]

Nature Photon. (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nature Photon. 7, 775–782 (2013).
[Crossref]

Opt. Commun. (1)

H. Wang, H. Qi, J. Zhao, B. Wang, and J. Shao, “Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation,” Opt. Commun. 387, 214–222 (2017).
[Crossref]

Opt. Eng. (4)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[Crossref]

R. A. Negres, C. W. Carr, T. A. Laurence, K. Stanion, G. Guss, D. A. Cross, P. J. Wegner, and C. J. Stolz, “Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers,” Opt. Eng. 56, 011008 (2016).
[Crossref]

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent Progress On Laser-Induced Modifications And Intrinsic Bulk Damage Of Wide-Gap Optical Materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

M. Sun, J. Zhu, and Z. Lin, “Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser,” Opt. Eng. 56, 011026 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (4)

C. Carr, J. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749 (1996).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102–15115 (1992).
[Crossref]

Phys. Rev. Lett. (4)

P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthir, J. Geindre, S. Guizard, G. Hamonioux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron-gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994).
[Crossref] [PubMed]

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394 (1999).
[Crossref]

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883 (1999).
[Crossref]

B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Physics of Plasmas (1)

C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, “Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma acceleratorsa),” Physics of Plasmas 21, 056706 (2014).
[Crossref]

Plasma Physics and Controlled Fusion (1)

M. Borghesi, A. Bigongiari, S. Kar, A. Macchi, L. Romagnani, P. Audebert, J. Fuchs, T. Toncian, O. Willi, S. V. Bulanov, A. J. Mackinnon, and J. C. Gauthier, “Laser-driven proton acceleration: source optimization and radiographic applications,” Plasma Physics and Controlled Fusion 50, 124040 (2008).
[Crossref]

Rev. Sci. Instrumen. (1)

I. Jovanovic, C. Brown, B. Wattellier, N. Nielsen, W. Molander, B. Stuart, D. Pennington, and C. P. J. Barty, “Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification,” Rev. Sci. Instrumen. 75, 5193 (2004).
[Crossref]

SPIE (1)

J. M. Di Nicola, S. T. Yang, C. D. Boley, J. K. Crane, J. E. Heebner, T. M. Spinka, P. Arnold, C. P. J. Barty, M. W. Bowers, T. S. Budge, K. Christensen, J. W. Dawson, G. Erbert, E. Feigenbaum, G. Guss, C. Haefner, M. R. Hermann, D. Homoelle, J. A. Jarboe, J. K. Lawson, R. Lowe-Webb, K. McCandless, B. McHale, L. J. Pelz, P. P. Pham, M. A. Prantil, M. L. Rehak, M. A. Rever, M. C. Rushford, R. A. Sacks, M. Shaw, D. Smauley, L. K. Smith, R. Speck, G. Tietbohl, P. J. Wegner, and C. Widmayer, “The commissioning of the advanced radiographic capability laser system: experimental and modeling results at the main laser output,” SPIE 9345, 93450 (2015).

Other (4)

J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, and R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conference Proceedings1507, 147–153 (2012).

R. A. Negres, I. Bass, K. A. Stanion, G. Guss, D. A. Cross, D. A. Alessi, C. Stolz, and C. W. Carr, “Apparatus and techniques for measuring laser damage resistance of large-area, multilayer dielectric mirrors for use with high energy, picosecond lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SM3M–5.

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The Role of Defects in Laser-induced Modifications of Silica Coatings and Fused Silica Using Picosecond Pulses at 1053 nm: I. Damage Morphology,” Submitted (2017).

A. Mouskeftaras, “Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials,” Theses, Ecole Polytechnique X (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 A. Confocal image of damage test with a single 30 ps pulse at 1053 nm for the e-beam coating. Width of image is 141 µm. B. A processed image showing detected damage regions. For extracting density of precursors ρ(Φ), the centers of each region are matched to the corresponding regions in the fluence map.
Fig. 2
Fig. 2 We use Eq. (2) to determine the effects of varying the avalanche coefficient α (A), the multiphoton ionization coefficient βm (B), and the recombination time T (C) on the scaling laws for damage threshold. When comparing fused silica and silica coatings, these curves help guide interpretation of changes as changes in α, β, or T.
Fig. 3
Fig. 3 Schematics of damage morphologies found in laser-induced damage for pulse widths 1psτ ≤ 60ps. A. Smooth ablation crater. B. High density, individual pits that coalesce to form large damage craters. C. Smooth, circular depressions with a central pit, associated with isolated absorbers.
Fig. 4
Fig. 4 If the spacing between damage precursors is similar to the beam size, then variations in the beam size affect the 1/1 damage curves. The damage curve for a 100 µm beam are shown in blue, the curves for the 50 µm beam are in green, and the curves for the 30 µm beam are in red. The solid lines include all types of damage. The dotted lines include only the high-density pits, and excluded the smooth, circular depression damage sites. The definitions used for damage can affect both the sharpness and value of damage onset.
Fig. 5
Fig. 5 Pulse length τ scaling of the onset of laser-induced damage for fused silica surfaces with 1053 nm laser. Fluences shown are the level at which 50% of the tested sites undergo damage. Two definitions of damage are used. For solid lines, only damage exhibiting ablation pits or high-density pits (defined in text) are included. For dashed lines, lower density smooth, circular depressions damage are included. Three beam sizes are used, showing the variation of pulse length scaling with beam size. The dotted magenta line is for a damage test using 10 shots per site. Orange squares are the growth thresholds for observable growth using 100 µm beam, and cyan circles are for large-scale growth using the same beam.
Fig. 6
Fig. 6 Growth of smooth, circular depression damage sites with 10 shots. in situ images of damage progression were taken before damage and after each shot. 6 of the 10 shots are shown. For each shot, the cumulative change from no shots is shown on the left, and the change from the previous shot is shown on the right. For example, no change is observed in shot 5, but a significant change is observed in shot 8. The fluence of each shot is noted. After shot 1, the damage is a grouping of damage sites with the “smooth, circular depression” morphology. As this figure shows, smooth, circular depressions can grow into large, fractured craters.
Fig. 7
Fig. 7 Pulse length τ scaling of the onset of laser-induced damage for E-beam silica coatings with 1053 nm laser pulses. Fluences shown are the level at which 50% of the tested sites undergo damage. Two definitions of damage are used. For solid lines, only damage exhibiting deeper pits are included. For dashed lines, all lower density smooth, circular depression damage is included. Three beam sizes are used, in this case showing no variation of pulse length scaling with beam size. The dotted magenta line is for a damage test using 10 shots per site. Orange squares are the growth thresholds for observable growth using 100 µm beam, and cyan circles are for large-scale growth using the same beam.
Fig. 8
Fig. 8 Pulse length τ scaling of the onset of laser-induced damage for PIAD silica coatings with 1053 nm laser. Fluences shown are the level at which 50% of the tested sites undergo damage. Two definitions of damage are used. For solid lines, only damage exhibiting deeper pits are included. For dashed lines, all lower density smooth, circular depression damage are included. Three beam sizes are used, in this case showing no variation of pulse length scaling with beam size. The dotted magenta line is for a damage test using 10 shots per site. Orange squares are the growth thresholds for observable growth using 100 µm beam, and cyan circles are for large-scale growth using the same beam.
Fig. 9
Fig. 9 Growth of smooth, circular depression damage sites for E-beam coating with 10 shots. in situ images of damage progression were taken before damage and after each shot. 6 of the 10 shots are shown. For each shot, the cumulative change from 0 shots is shown on the left, and the change from the previous shot is shown on the right. The fluence of each shot is noted. After shot 1, the damage is a grouping of damage sites with the “smooth, circular depression” morphology. As shown also with the fused silica in Fig. 6, the smooth circular depression damage sites on e-beam coatings can grow into large, fractured craters.
Fig. 10
Fig. 10 Modeling comparisons for Fused Silica and E-beam silica scaling. Solid lines are averages of data from Figs. 5 and 7. Dashed red line is fit using Eq. (2). Other lines are calculations based on parameters from [23,38] using Eq. (1) and [25] using Eq. (3). These models used Gaussian pulses rather than flat-in-time pulses for the simulations. None of the models adequately fit the data observed for 1 ≤ τ ≤ 60 ps.
Fig. 11
Fig. 11 Density of precursors ρ (Φ) for e-beam silica coating as a function of pulse width. Solid lines are for all observed damage, with the same definition of damage to dashed lines in Fig. 7: the smooth, circular depression morphology dominated the damage properties. Dash-Dot lines for 31 and 59 ps are only for sites that are similar to those that undergo growth in other experiments (see orange squares in Fig. 7). Dashed line for 0.9 ps is for high density pits observed in one case: in all other cases the coating was completely removed. The overlapping curves for varying pulse widths show that fluence is the critical parameter, suggesting that single photon absorbing process initiate damage in isolated precursors that lead to smooth, circular depressions.
Fig. 12
Fig. 12 Density of precursors ρ (Φ) for fused silica. Solid lines are for high density pits detected using SEM, with the same definition of damage as for the dashed lines in Fig. 5: high-density pits and ablation limit the damage performance. The dotted lines use the variable beam size experiments and the fitting procedure from [18] to extract ρ(Φ). The dashed lines are analogous to the result for e-beam coatings in Fig. 11, suggesting single-photon activated isolated absorbers for fluences less than 30 J/cm2. For the solid lines, the scaling of damage onset observed suggests multi-photon processes play a role in initiating the high-density pits.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d n d t = β m I m + α n I n T
n C R = β m ( Φ t h τ ) m [ exp ( α Φ t h τ T ) 1 α Φ t h τ 1 T ]
d n d t = β m I m + w ( I ) n

Metrics