Abstract

Silicon nitride is a well-established material for photonic devices and integrated circuits. It displays a broad transparency window spanning from the visible to the mid-IR and waveguides can be manufactured with low losses. An absence of nonlinear multi-photon absorption in the erbium lightwave communications band has enabled various nonlinear optic applications in the past decade. Silicon nitride is a dielectric material whose optical and mechanical properties strongly depend on the deposition conditions. In particular, the optical bandgap can be modified with the gas flow ratio during low-pressure chemical vapor deposition (LPCVD). Here we show that this parameter can be controlled in a highly reproducible manner, providing an approach to synthesize the nonlinear Kerr coefficient of the material. This holistic empirical study provides relevant guidelines to optimize the properties of LPCVD silicon nitride waveguides for nonlinear optics applications that rely on the Kerr effect.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides

Clemens J. Krückel, Attila Fülöp, Thomas Klintberg, Jörgen Bengtsson, Peter A. Andrekson, and Víctor Torres-Company
Opt. Express 23(20) 25827-25837 (2015)

Nonlinear silicon nitride waveguides based on a PECVD deposition platform

Linghua Wang, Weiqiang Xie, Dries Van Thourhout, Yazhen Zhang, Hui Yu, and Shaohao Wang
Opt. Express 26(8) 9645-9654 (2018)

Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform [Invited]

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng
Photon. Res. 6(5) B50-B66 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
    [Crossref]
  2. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  3. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, and M. R. Watts, “C-and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1763 (2013).
    [Crossref] [PubMed]
  4. W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).
  5. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
    [Crossref]
  6. S. Romero-Garcia, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  7. R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Quantum Electron. 18(5), 1583–1596 (2012).
    [Crossref]
  8. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  9. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
    [Crossref]
  10. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
    [Crossref]
  11. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
    [Crossref]
  12. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [Crossref] [PubMed]
  13. J. P. Epping, T. Hellwig, M. Hoekman, R. Matemann, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23(15), 19596–19604 (2017).
    [Crossref]
  14. C. J. KrÃijckel, V. Torres-Company, P. A. Andrekson, D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Continuous wave-pumped wavelength conversion in low-loss silicon nitride waveguides,” Opt. Lett. 40(6), 875–878 (2015).
    [Crossref]
  15. Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photon. 10, 406–414 (2016).
    [Crossref]
  16. T. Makino, “Composition and structure control by source gas ratio in LPCVD SiNx,” J. Electrochem. Soc. 130(2), 450–455 (1983).
    [Crossref]
  17. J. G. E. Gardeniers, H. A. C. Tilmans, and C. C. G. Visser, “LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design,” J. Vac. Sci. Technol. A 14(5), 2879–2892 (1996).
    [Crossref]
  18. Y. Toivola, J. Thurn, R. F. Cook, G. Cibuzar, and K. Roberts, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94(10), 6915–6922 (2003).
    [Crossref]
  19. J. M. Olson, “Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part I: preliminary LPCVD experiments,” Mater. Sci. Semicond. Process. 5(1), 51–60 (2002).
    [Crossref]
  20. C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, (20)25828–25837 (2015)
    [Crossref]
  21. C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
    [Crossref]
  22. K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
    [Crossref]
  23. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
    [Crossref]
  24. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselman, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
    [Crossref]
  25. K. Hyun Nam, I. H. Park, and S. Hwan Ko, “Patterning by controlled cracking,” Nature 485, 221–224 (2012).
    [Crossref]
  26. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823–4826 (2015).
    [Crossref] [PubMed]
  27. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171–1180 (2016).
    [Crossref]
  28. G. E. Jellison and F. A. Modine, “Parametrization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
    [Crossref]
  29. K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgaertner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243(1–4), 401–408 (2005).
    [Crossref]
  30. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [Crossref] [PubMed]
  31. J. M. Chavez Boggio, D. BodenmÃűller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. BÃűhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31(11), 2846–2857 (2014).
    [Crossref]
  32. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μ m,” Opt. Lett. 21(24), 1966–1968 (1996).
    [Crossref] [PubMed]
  33. X. Liu, M. Pu, B. Zhou, C. J. KrÃijckel, A. FÃijlÃűp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41(12), 2719–2722 (2016).
    [Crossref] [PubMed]
  34. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
    [Crossref] [PubMed]
  35. K. Tanaka and A. Saitoh, “Optical nonlinearity in glasses: the origin and photo-excitation effects,” J. Mater. Sci. Mater. Electron. 18(Suppl 1), 75–79 (2007).
    [Crossref]
  36. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
    [Crossref]
  37. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
    [Crossref]
  38. R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  39. G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72(20), 205117 (2005).
    [Crossref]
  40. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
    [Crossref] [PubMed]
  41. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
    [Crossref]
  42. M. -C. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
    [Crossref] [PubMed]
  43. D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
    [Crossref]

2017 (3)

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

J. P. Epping, T. Hellwig, M. Hoekman, R. Matemann, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23(15), 19596–19604 (2017).
[Crossref]

2016 (4)

2015 (3)

2014 (2)

2013 (3)

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, and M. R. Watts, “C-and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1763 (2013).
[Crossref] [PubMed]

S. Romero-Garcia, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

2012 (4)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

K. Hyun Nam, I. H. Park, and S. Hwan Ko, “Patterning by controlled cracking,” Nature 485, 221–224 (2012).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[Crossref] [PubMed]

2011 (4)

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

2010 (5)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
[Crossref] [PubMed]

M. -C. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

2008 (1)

2007 (3)

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

K. Tanaka and A. Saitoh, “Optical nonlinearity in glasses: the origin and photo-excitation effects,” J. Mater. Sci. Mater. Electron. 18(Suppl 1), 75–79 (2007).
[Crossref]

2005 (2)

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72(20), 205117 (2005).
[Crossref]

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgaertner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243(1–4), 401–408 (2005).
[Crossref]

2003 (1)

Y. Toivola, J. Thurn, R. F. Cook, G. Cibuzar, and K. Roberts, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94(10), 6915–6922 (2003).
[Crossref]

2002 (1)

J. M. Olson, “Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part I: preliminary LPCVD experiments,” Mater. Sci. Semicond. Process. 5(1), 51–60 (2002).
[Crossref]

1996 (3)

G. E. Jellison and F. A. Modine, “Parametrization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

J. G. E. Gardeniers, H. A. C. Tilmans, and C. C. G. Visser, “LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design,” J. Vac. Sci. Technol. A 14(5), 2879–2892 (1996).
[Crossref]

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μ m,” Opt. Lett. 21(24), 1966–1968 (1996).
[Crossref] [PubMed]

1990 (1)

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

1983 (1)

T. Makino, “Composition and structure control by source gas ratio in LPCVD SiNx,” J. Electrochem. Soc. 130(2), 450–455 (1983).
[Crossref]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Adam, T. N.

Agrawal, A. M.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Alic, N.

Andersen, K. N.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgaertner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243(1–4), 401–408 (2005).
[Crossref]

Andrekson, P. A.

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, (20)25828–25837 (2015)
[Crossref]

C. J. KrÃijckel, V. Torres-Company, P. A. Andrekson, D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Continuous wave-pumped wavelength conversion in low-loss silicon nitride waveguides,” Opt. Lett. 40(6), 875–878 (2015).
[Crossref]

Ang, L. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Bache, M.

Baets, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref]

Barton, J. S.

BÃuhm, M.

Baumgaertner, H.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgaertner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243(1–4), 401–408 (2005).
[Crossref]

Bauters, J. F.

Bengtsson, J.

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, (20)25828–25837 (2015)
[Crossref]

Bernier, E.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Blumenthal, D. J.

BodenmÃuller, D.

Bois, A.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Bois, B. Du

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Boller, K.-J.

Boskovic, A.

Bowers, J. E.

Bradley, J. D. B.

Brasch, V.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

Bruinink, C. M.

Chavez Boggio, J. M.

Chee, A. K. L.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Chernikov, S. V.

Cibuzar, G.

Y. Toivola, J. Thurn, R. F. Cook, G. Cibuzar, and K. Roberts, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94(10), 6915–6922 (2003).
[Crossref]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Clemmen, S.

Cook, R. F.

Y. Toivola, J. Thurn, R. F. Cook, G. Cibuzar, and K. Roberts, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94(10), 6915–6922 (2003).
[Crossref]

Coolbaugh, D.

Davanco, M.

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photon. 10, 406–414 (2016).
[Crossref]

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Dhakal, A.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Dominguez, T.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Dumais, P.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Eisermann, R.

Epping, J. P.

FÃijlÃup, A.

Fainman, Y.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

Fallnich, C.

Fan, L.

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Finkelstein, H.

Foster, M. A.

Fremberg, T.

French, R. H.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72(20), 205117 (2005).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Fülöp, A.

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, (20)25828–25837 (2015)
[Crossref]

Gaeta, A. L.

Galili, M.

Gardeniers, J. G. E.

J. G. E. Gardeniers, H. A. C. Tilmans, and C. C. G. Visser, “LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design,” J. Vac. Sci. Technol. A 14(5), 2879–2892 (1996).
[Crossref]

Gardes, F. Y.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

Geiselman, M.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

Goodwill, D.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

Gruner-Nielsen, L.

Hagan, D. J.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Halir, R.

Han, K.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

Haynes, R.

Heck, M. J. R.

Heideman, R. G.

Heiderman, R.

R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Hellwig, T.

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

Hoekman, M.

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

Hosseini, E. S.

Hu, H.

Hwan Ko, S.

K. Hyun Nam, I. H. Park, and S. Hwan Ko, “Patterning by controlled cracking,” Nature 485, 221–224 (2012).
[Crossref]

Hyun Nam, K.

K. Hyun Nam, I. H. Park, and S. Hwan Ko, “Patterning by controlled cracking,” Nature 485, 221–224 (2012).
[Crossref]

Ikeda, K.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Jaramillo-Villegas, J. A.

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parametrization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Jeong, J.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Jeppesen, P.

Ji, H.

John, D. D.

Jones, D. J.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72(20), 205117 (2005).
[Crossref]

Jost, J. D.

Khokhar, A. Z.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Kim, S.

Kimerling, L. C.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Kippenberg, T. J.

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselman, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

Klintberg, T.

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, (20)25828–25837 (2015)
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Kordts, A.

KrÃijckel, C. J.

Krückel, C. J.

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, (20)25828–25837 (2015)
[Crossref]

Kuyken, B.

Lacava, C.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Lamont, M. R. E.

Leaird, D. E.

Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171–1180 (2016).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Leake, G.

Lee, C. J.

Lee, Y. J.

Leinse, A.

Lemon, M. F.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72(20), 205117 (2005).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Levring, O. A.

Levy, J. S.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Li, Q.

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photon. 10, 406–414 (2016).
[Crossref]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Lipson, M.

Lisker, M.

Liu, X.

Liu, Y.

Luke, K.

Ma, C.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Mak, J. C.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Makino, T.

T. Makino, “Composition and structure control by source gas ratio in LPCVD SiNx,” J. Electrochem. Soc. 130(2), 450–455 (1983).
[Crossref]

Massar, S.

Matemann, R.

Merget, F.

Metcalf, A. J.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Mikkelsen, J. C.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parametrization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Morthier, G.

Narayanan, K.

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Ng, D. K. T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Ng, S. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Niu, B.

Noman, A. Al

Okawachi, Y.

Olson, J. M.

J. M. Olson, “Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part I: preliminary LPCVD experiments,” Mater. Sci. Semicond. Process. 5(1), 51–60 (2002).
[Crossref]

Ooi, K. J. A.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Oxenløwe, L. K.

Park, I. H.

K. Hyun Nam, I. H. Park, and S. Hwan Ko, “Patterning by controlled cracking,” Nature 485, 221–224 (2012).
[Crossref]

Petropoulos, P.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Pfeiffer, M. H. P.

Poon, J. K.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Preble, S. F.

Pu, M.

Purnawirman,

Qi, M.

Reed, G. T.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Richardson, D. J.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

Roberts, K.

Y. Toivola, J. Thurn, R. F. Cook, G. Cibuzar, and K. Roberts, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94(10), 6915–6922 (2003).
[Crossref]

Roelkens, G.

Romero-Garcia, S.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

Roth, M. M.

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Sacher, W. D.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Saitoh, A.

K. Tanaka and A. Saitoh, “Optical nonlinearity in glasses: the origin and photo-excitation effects,” J. Mater. Sci. Mater. Electron. 18(Suppl 1), 75–79 (2007).
[Crossref]

Salem, R.

Saperstein, R. E.

Schreuder, E.

R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Selvaraja, S. K.

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Spencer, D. T.

Srinivasan, K.

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photon. 10, 406–414 (2016).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Stankovic, S.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Stimpel-Lindner, T.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgaertner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243(1–4), 401–408 (2005).
[Crossref]

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Subramanian, A. Z.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

Sulima, T.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgaertner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243(1–4), 401–408 (2005).
[Crossref]

Sun, J.

Sun, P. C.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

Svendsen, W. E.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgaertner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243(1–4), 401–408 (2005).
[Crossref]

Tan, D. T. H.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

Tan, G. L.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72(20), 205117 (2005).
[Crossref]

Tanaka, K.

K. Tanaka and A. Saitoh, “Optical nonlinearity in glasses: the origin and photo-excitation effects,” J. Mater. Sci. Mater. Electron. 18(Suppl 1), 75–79 (2007).
[Crossref]

Taylor, J. R.

Thurn, J.

Y. Toivola, J. Thurn, R. F. Cook, G. Cibuzar, and K. Roberts, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94(10), 6915–6922 (2003).
[Crossref]

Tien, M. -C.

Tilmans, H. A. C.

J. G. E. Gardeniers, H. A. C. Tilmans, and C. C. G. Visser, “LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design,” J. Vac. Sci. Technol. A 14(5), 2879–2892 (1996).
[Crossref]

Toivola, Y.

Y. Toivola, J. Thurn, R. F. Cook, G. Cibuzar, and K. Roberts, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94(10), 6915–6922 (2003).
[Crossref]

Torres-Company, V.

Turner, A. C.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

van der Slot, P. J. M.

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

van Rees, A.

Van Stryland, E. W.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Varghese, L. T.

Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171–1180 (2016).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Visser, C. C. G.

J. G. E. Gardeniers, H. A. C. Tilmans, and C. C. G. Visser, “LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design,” J. Vac. Sci. Technol. A 14(5), 2879–2892 (1996).
[Crossref]

Wang, C.

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

Wang, J.

Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171–1180 (2016).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Wang, P.-H.

Wang, Q.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Wang, T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Watts, M. R.

Weiner, A. M.

Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171–1180 (2016).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Witzens, J.

Xuan, Y.

Xue, X.

Yang, Y.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Yong, Z.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Zervas, M.

Zhong, F.

Zhou, B.

Zimmermann, L.

Appl. Phys. Lett. (3)

G. E. Jellison and F. A. Modine, “Parametrization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101 (2010).
[Crossref]

Appl. Surf. Sci. (1)

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgaertner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243(1–4), 401–408 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

IEEE Photon. J. (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5(6), 2202809 (2013).
[Crossref]

J. Appl. Phys. (1)

Y. Toivola, J. Thurn, R. F. Cook, G. Cibuzar, and K. Roberts, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94(10), 6915–6922 (2003).
[Crossref]

J. Electrochem. Soc. (1)

T. Makino, “Composition and structure control by source gas ratio in LPCVD SiNx,” J. Electrochem. Soc. 130(2), 450–455 (1983).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

K. Tanaka and A. Saitoh, “Optical nonlinearity in glasses: the origin and photo-excitation effects,” J. Mater. Sci. Mater. Electron. 18(Suppl 1), 75–79 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

J. G. E. Gardeniers, H. A. C. Tilmans, and C. C. G. Visser, “LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design,” J. Vac. Sci. Technol. A 14(5), 2879–2892 (1996).
[Crossref]

Mater. Sci. Semicond. Process. (1)

J. M. Olson, “Analysis of LPCVD process conditions for the deposition of low stress silicon nitride. Part I: preliminary LPCVD experiments,” Mater. Sci. Semicond. Process. 5(1), 51–60 (2002).
[Crossref]

Nat. Commun. (1)

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agrawal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge,” Nat. Commun. 8, 13878 (2017).
[Crossref]

Nat. Photon. (6)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photon. 10, 406–414 (2016).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photon. 6, 480–487 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Nature (1)

K. Hyun Nam, I. H. Park, and S. Hwan Ko, “Patterning by controlled cracking,” Nature 485, 221–224 (2012).
[Crossref]

Opt. Express (9)

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23, (20)25828–25837 (2015)
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

S. Romero-Garcia, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

J. P. Epping, T. Hellwig, M. Hoekman, R. Matemann, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23(15), 19596–19604 (2017).
[Crossref]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
[Crossref] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[Crossref]

M. -C. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (3)

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Phys. Rev. B (1)

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72(20), 205117 (2005).
[Crossref]

Phys. Rev. Lett. (1)

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Lacava, S. Stankovic, A. Z. Khokhar, T. Dominguez, F. Y. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich silicon nitride for nonlinear signal processing applications,” Sci. Rep. 7(22), 1–13 (2017).
[Crossref]

Other (1)

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” Conference on Lasers and Electro-Optics, JTH4C.3. (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Measured refractive index as a function of wavelength for different SiN compositions. The shadowed area shows extrapolated data from the measurements. (b) Optical bandgap as a function of gas flow ratio. The two-photon absorption limit indicates twice the photon energy at 1550 nm wavelength. The inset shows a zoomed in part of the measured imaginary refractive index k as a function of wavelength for the fabricated compositions. (c) Area scan of the film thickness with 139 points showing the uniformity of the deposited SiN film on a 3-inch wafer (DCS:NH3 8). (d) Reproducibility of the refractive index at 850 nm carried out over 22 points on a single wafer and between 3 independent deposition runs.
Fig. 2
Fig. 2 Waveguide propagation loss as a function of wavelength for waveguides with 5 different silicon nitride compositions corresponding to different DCS:NH3 ratios. The darker colored line shows the mean value and the brighter shadowed areas illustrates the standard deviation of the loss measurements. The inset shows the waveguide core after etching.
Fig. 3
Fig. 3 (a) Impact of height and width variation on the group velocity dispersion (DCS:NH3 16.7, quasi-TE-mode). (b) Group velocity dispersion coefficient β2 as a function of waveguide width and height of the silicon nitride waveguide considering the material corresponding to DCS:NH3 16.7 (1550 nm wavelength, quasi-TE-mode). The black line indicates the dimensions at which zero GVD occurs. The circle indicates the dimensions of the fabricated waveguides. (c) Waveguide dimensions at which crossing from normal to anomalous dispersion occurs (1550 nm wavelength, quasi-TE-mode). The circle indicates the dimensions of the fabricated waveguides.
Fig. 4
Fig. 4 (a) Circles - Measured nonlinear parameter γ with the fabricated dimensions (0.7 μm height and 1.65 μm width). Diamonds - Numerical simulations of the maximum γ at the dimensions that give the highest optical confinement in the waveguide. Squares - Numerical simulations of the largest achievable γ with the restriction to have zero group-velocity dispersion. (b) Simulation results of the effective area Aeff for the fabrication gas ratios. (c) Evaluated nonlinear Kerr coefficient from the measured nonlinear parameter γ and the simulated effective area Aeff.
Fig. 5
Fig. 5 (a) Nonlinear parameter for different width and height of the waveguide core fabricated from DCS:NH3 ratio 16.7. The simulations are made for the fundamental quasi TE-mode at 1550 nm wavelength. The plot indicates the fabricated waveguide dimensions, the dimensions that lead to a maximum nonlinear parameter, and the dimensions that result in a maximum nonlinear parameter with the requirement of zero GVD. (b) Maximum relative nonlinear phase shift γ · max Leff achieved for the fabricated waveguide dimensions of 700 nm height and 1650 nm width.
Fig. 6
Fig. 6 Rescaled nonlinear Kerr coefficient as a function of optical bandgap. The blue line indicates the 1 / E g 4 relation. See text for more details.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 = K G 2 ( ω / E g ) n 0 2 E g 4 .

Metrics