Abstract

Magnetic holographic memory is expected as a rewritable high-capacity data storage technology. To improve the reconstructed image, we investigate recording conditions by numerical simulation and experiments. We found experimentally that four diffracted beams from a digital micromirror device interfere with each other at a suitable defocus recording point, and such overlapping is favorable to obtain clear reconstruction images without diffuser. Subsequently, we modify the shape of the reference beam to ensure more effective interference. As a result, we achieve error-free image reconstruction from the magnetic hologram. Our results indicate that magnetic holograms can potentially be utilized as holographic memory.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography

Ryosuke Isogai, Yuichi Nakamura, Hiroyuki Takagi, Taichi Goto, Pang Boey Lim, and Mitsuteru Inoue
Opt. Express 24(1) 522-527 (2016)

Magnetic volumetric hologram memory with magnetic garnet

Yuichi Nakamura, Hiroyuki Takagi, Pang Boey Lim, and Mitsuteru Inoue
Opt. Express 22(13) 16439-16444 (2014)

Collinear volumetric magnetic holography with magnetophotonic microcavities

Ryosuke Isogai, Shota Suzuki, Kazuki Nakamura, Yuichi Nakamura, Hiroyuki Takagi, Taichi Goto, Pang Boey Lim, and Mitsuteru Inoue
Opt. Express 23(10) 13153-13158 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Takeda, “Hologram memory with high quality and high information storage density,” Jpn. J. Appl. Phys. 11(5), 656–665 (1972).
    [Crossref]
  2. L. D’Auria, J. P. Huignard, and E. Spits, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9(2), 83–94 (1973).
    [Crossref]
  3. J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
    [Crossref]
  4. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
    [Crossref] [PubMed]
  5. H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33(17), 3764–3774 (1994).
    [Crossref] [PubMed]
  6. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782–784 (1995).
    [Crossref] [PubMed]
  7. H. Horimai and X. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).
    [Crossref]
  8. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  9. H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
    [Crossref]
  10. H. Horimai and X. Tan, “Holographic information storage system: Today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
    [Crossref]
  11. R. S. Mezrich, “Curie-point writing of magnetic holograms on MnBi,” Appl. Phys. Lett. 14(4), 132–134 (1969).
    [Crossref]
  12. G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
    [Crossref]
  13. R. S. Mezrich, “Magnetic holography,” Appl. Opt. 9(10), 2275–2279 (1970).
    [Crossref] [PubMed]
  14. R. S. Mezrich, “Reconstruction effects in magnetic holography,” IEEE Trans. Magn. 6(3), 537–541 (1970).
    [Crossref]
  15. H. M. Haskal, “Polarization and efficiency in magnetic holography,” IEEE Trans. Magn. 6(3), 542–545 (1970).
    [Crossref]
  16. M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn. 8(3), 523–525 (1972).
    [Crossref]
  17. D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn. 9(2), 66–83 (1973).
    [Crossref]
  18. Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
    [Crossref] [PubMed]
  19. R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
    [Crossref]
  20. R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
    [Crossref]
  21. R. Isogai, S. Suzuki, K. Nakamura, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Collinear volumetric magnetic holography with magnetophotonic microcavities,” Opt. Express 23(10), 13153–13158 (2015).
    [Crossref] [PubMed]
  22. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
    [Crossref]
  23. M. Levy, “Normal modes and birefringent magnetophotonic crystals,” J. Appl. Phys. 99(7), 073104 (2006).
    [Crossref]
  24. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
    [Crossref] [PubMed]
  25. A. M. Grishin, S. I. Khartsev, and H. Kawasaki, “980 nm Bi3Fe5O12/ Sm3Ga5O12 magneto-optical photonic crystal,” Appl. Phys. Lett. 90(19), 191113 (2007).
    [Crossref]
  26. Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
    [Crossref]
  27. R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
    [Crossref] [PubMed]
  28. B. Marcus, “Modulation Codes for Holographic Recording,” in Holographic Data Storage, H. Coufal, D. Psaltis D and G. T. Sinterbox, Eds. (Springer-Verlag, 2000).

2016 (1)

2015 (2)

R. Isogai, S. Suzuki, K. Nakamura, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Collinear volumetric magnetic holography with magnetophotonic microcavities,” Opt. Express 23(10), 13153–13158 (2015).
[Crossref] [PubMed]

R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
[Crossref]

2014 (3)

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

2008 (1)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

2007 (2)

A. M. Grishin, S. I. Khartsev, and H. Kawasaki, “980 nm Bi3Fe5O12/ Sm3Ga5O12 magneto-optical photonic crystal,” Appl. Phys. Lett. 90(19), 191113 (2007).
[Crossref]

H. Horimai and X. Tan, “Holographic information storage system: Today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
[Crossref]

2006 (2)

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

M. Levy, “Normal modes and birefringent magnetophotonic crystals,” J. Appl. Phys. 99(7), 073104 (2006).
[Crossref]

2005 (3)

H. Horimai and X. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).
[Crossref]

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

1995 (2)

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782–784 (1995).
[Crossref] [PubMed]

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

1994 (1)

1992 (1)

1973 (2)

L. D’Auria, J. P. Huignard, and E. Spits, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9(2), 83–94 (1973).
[Crossref]

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn. 9(2), 66–83 (1973).
[Crossref]

1972 (2)

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn. 8(3), 523–525 (1972).
[Crossref]

Y. Takeda, “Hologram memory with high quality and high information storage density,” Jpn. J. Appl. Phys. 11(5), 656–665 (1972).
[Crossref]

1970 (3)

R. S. Mezrich, “Reconstruction effects in magnetic holography,” IEEE Trans. Magn. 6(3), 537–541 (1970).
[Crossref]

H. M. Haskal, “Polarization and efficiency in magnetic holography,” IEEE Trans. Magn. 6(3), 542–545 (1970).
[Crossref]

R. S. Mezrich, “Magnetic holography,” Appl. Opt. 9(10), 2275–2279 (1970).
[Crossref] [PubMed]

1969 (2)

R. S. Mezrich, “Curie-point writing of magnetic holograms on MnBi,” Appl. Phys. Lett. 14(4), 132–134 (1969).
[Crossref]

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

Aktsipetrov, O.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Barbastathis, G.

Baryshev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Baryshev, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Chang, T. V.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Chen, D.

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn. 9(2), 66–83 (1973).
[Crossref]

Christian, Q.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Curtis, K.

D’Auria, L.

L. D’Auria, J. P. Huignard, and E. Spits, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9(2), 83–94 (1973).
[Crossref]

Dorofeenko, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Fan, G.

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

Fedyanin, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Fujikawa, R.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Goto, T.

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
[Crossref]

R. Isogai, S. Suzuki, K. Nakamura, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Collinear volumetric magnetic holography with magnetophotonic microcavities,” Opt. Express 23(10), 13153–13158 (2015).
[Crossref] [PubMed]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Granovsky, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Granovsky, A. B.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Greiner, J. H.

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

Grishin, A. M.

A. M. Grishin, S. I. Khartsev, and H. Kawasaki, “980 nm Bi3Fe5O12/ Sm3Ga5O12 magneto-optical photonic crystal,” Appl. Phys. Lett. 90(19), 191113 (2007).
[Crossref]

Haskal, H. M.

H. M. Haskal, “Polarization and efficiency in magnetic holography,” IEEE Trans. Magn. 6(3), 542–545 (1970).
[Crossref]

Hong, J. H.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Horimai, H.

H. Horimai and X. Tan, “Holographic information storage system: Today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
[Crossref]

H. Horimai and X. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).
[Crossref]

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

Huignard, J. P.

L. D’Auria, J. P. Huignard, and E. Spits, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9(2), 83–94 (1973).
[Crossref]

Inoue, M.

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
[Crossref]

R. Isogai, S. Suzuki, K. Nakamura, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Collinear volumetric magnetic holography with magnetophotonic microcavities,” Opt. Express 23(10), 13153–13158 (2015).
[Crossref] [PubMed]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Isogai, R.

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
[Crossref]

R. Isogai, S. Suzuki, K. Nakamura, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Collinear volumetric magnetic holography with magnetophotonic microcavities,” Opt. Express 23(10), 13153–13158 (2015).
[Crossref] [PubMed]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Ito, T.

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn. 8(3), 523–525 (1972).
[Crossref]

Kawasaki, H.

A. M. Grishin, S. I. Khartsev, and H. Kawasaki, “980 nm Bi3Fe5O12/ Sm3Ga5O12 magneto-optical photonic crystal,” Appl. Phys. Lett. 90(19), 191113 (2007).
[Crossref]

Khanikaev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Khartsev, S. I.

A. M. Grishin, S. I. Khartsev, and H. Kawasaki, “980 nm Bi3Fe5O12/ Sm3Ga5O12 magneto-optical photonic crystal,” Appl. Phys. Lett. 90(19), 191113 (2007).
[Crossref]

Levene, M.

Levy, M.

M. Levy, “Normal modes and birefringent magnetophotonic crystals,” J. Appl. Phys. 99(7), 073104 (2006).
[Crossref]

Leyva, V.

Li, H.-Y. S.

Li, J.

Lim, P. B.

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
[Crossref]

R. Isogai, S. Suzuki, K. Nakamura, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Collinear volumetric magnetic holography with magnetophotonic microcavities,” Opt. Express 23(10), 13153–13158 (2015).
[Crossref] [PubMed]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Lisyansky, A. A.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

McMichael, I.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Merzlikin, A. M.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Mezrich, R. S.

R. S. Mezrich, “Magnetic holography,” Appl. Opt. 9(10), 2275–2279 (1970).
[Crossref] [PubMed]

R. S. Mezrich, “Reconstruction effects in magnetic holography,” IEEE Trans. Magn. 6(3), 537–541 (1970).
[Crossref]

R. S. Mezrich, “Curie-point writing of magnetic holograms on MnBi,” Appl. Phys. Lett. 14(4), 132–134 (1969).
[Crossref]

Murzina, T.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Nakamura, K.

Nakamura, Y.

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

R. Isogai, S. Suzuki, K. Nakamura, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Collinear volumetric magnetic holography with magnetophotonic microcavities,” Opt. Express 23(10), 13153–13158 (2015).
[Crossref] [PubMed]

R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Nishimura, Y.

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn. 8(3), 523–525 (1972).
[Crossref]

Otto, G. N.

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn. 9(2), 66–83 (1973).
[Crossref]

Paek, E. G.

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Pennington, K.

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Sagara, N.

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Schmit, F. M.

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn. 9(2), 66–83 (1973).
[Crossref]

Spits, E.

L. D’Auria, J. P. Huignard, and E. Spits, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9(2), 83–94 (1973).
[Crossref]

Suzuki, S.

Takagi, H.

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

R. Isogai, S. Suzuki, K. Nakamura, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Collinear volumetric magnetic holography with magnetophotonic microcavities,” Opt. Express 23(10), 13153–13158 (2015).
[Crossref] [PubMed]

R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

Takeda, Y.

Y. Takeda, “Hologram memory with high quality and high information storage density,” Jpn. J. Appl. Phys. 11(5), 656–665 (1972).
[Crossref]

Tan, X.

H. Horimai and X. Tan, “Holographic information storage system: Today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
[Crossref]

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

H. Horimai and X. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

Tanaka, M.

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn. 8(3), 523–525 (1972).
[Crossref]

Uchida, H.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Vinogradov, A. P.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Yariv, A.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

R. S. Mezrich, “Curie-point writing of magnetic holograms on MnBi,” Appl. Phys. Lett. 14(4), 132–134 (1969).
[Crossref]

A. M. Grishin, S. I. Khartsev, and H. Kawasaki, “980 nm Bi3Fe5O12/ Sm3Ga5O12 magneto-optical photonic crystal,” Appl. Phys. Lett. 90(19), 191113 (2007).
[Crossref]

IEEE Trans. Magn. (6)

L. D’Auria, J. P. Huignard, and E. Spits, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. 9(2), 83–94 (1973).
[Crossref]

H. Horimai and X. Tan, “Holographic information storage system: Today and future,” IEEE Trans. Magn. 43(2), 943–947 (2007).
[Crossref]

R. S. Mezrich, “Reconstruction effects in magnetic holography,” IEEE Trans. Magn. 6(3), 537–541 (1970).
[Crossref]

H. M. Haskal, “Polarization and efficiency in magnetic holography,” IEEE Trans. Magn. 6(3), 542–545 (1970).
[Crossref]

M. Tanaka, T. Ito, and Y. Nishimura, “Diffraction efficiency of magnetic hologram,” IEEE Trans. Magn. 8(3), 523–525 (1972).
[Crossref]

D. Chen, G. N. Otto, and F. M. Schmit, “MnBi films for magnetooptic recording,” IEEE Trans. Magn. 9(2), 66–83 (1973).
[Crossref]

J. Appl. Phys. (3)

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

M. Levy, “Normal modes and birefringent magnetophotonic crystals,” J. Appl. Phys. 99(7), 073104 (2006).
[Crossref]

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

J. Magn. Soc. Jpn. (2)

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

R. Isogai, T. Goto, H. Takagi, Y. Nakamura, P. B. Lim, and M. Inoue, “Effect of structure and properties of magnetic material on diffraction efficiency of magnetophotonic crystal media for magnetic volumetric holography,” J. Magn. Soc. Jpn. 39(2), 33–36 (2015).
[Crossref]

J. Phys. D (1)

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Takeda, “Hologram memory with high quality and high information storage density,” Jpn. J. Appl. Phys. 11(5), 656–665 (1972).
[Crossref]

Opt. Eng. (1)

J. H. Hong, I. McMichael, T. V. Chang, Q. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34(8), 2193–2203 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Rev. (1)

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

Phys. Rev. Lett. (1)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Horimai and X. Tan, “Holographic versatile disc system,” Proc. SPIE 5939, 593901 (2005).
[Crossref]

Other (1)

B. Marcus, “Modulation Codes for Holographic Recording,” in Holographic Data Storage, H. Coufal, D. Psaltis D and G. T. Sinterbox, Eds. (Springer-Verlag, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of optical setup for collinear holography, (b) schematic of diffracted light signals from the digital mirror device for holographic recording, (c) tracing of light signals near the medium, and the spatial light modulator (SLM) images of signal pattern observed with the CCD (d) through diffuser and (e) without diffuser.

Fig. 2
Fig. 2

(a) Model geometry for Fresnel–Kirchhoff diffraction formula and (b) typical input pattern.

Fig. 3
Fig. 3

Normalized intensity distribution of calculated interference pattern. (a) Intensity profile along the horizontal centerline shown in inset, and binarized intensity distributions for threshold intensities of (b) Ith = 0.70 × 10−3 and (c) Ith = 1.15 × 10−3. (d) Statistical result of interference profile showing the light intensity band between IMAX and IMIN wherein the interference information is included.

Fig. 4
Fig. 4

Effect of defocus length on the recording efficiency for several signal sizes. The images in the left and right panels show the calculated shapes of the information region at several points, with the white color corresponding to the information region and the orange color corresponding to zero information (wherein the intensity always exceeds the threshold regardless of the signal pattern).

Fig. 5
Fig. 5

(a) Effect of defocus length and recording energy on the reconstruction of signal pattern in collinear hologram without optical diffuser. Upper panels (b, c) depict schematic images of interference at four diffraction spots wherein the reference part of each diffraction spot is shown as a different color, while the bottom photos show the corresponding shapes of the magnetic fringes for the original ring pattern reference beam with (b) df = 150 µm and (c) df = 400 µm. The upper panel in (d) depicts the schematic image for the modified square reference pattern with df = 400 µm, while the bottom panel shows the corresponding photograph of the signal region.

Fig. 6
Fig. 6

(a) Examples of reconstructed images recorded at 80 µJ encoded with 2:4, 3:9, and 3:16 modulation schemes. (b) The error ratio in reconstructed images without diffuser for various modulation schemes and with diffuser for 3:16 modulation scheme shown in inset.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(X,Y,Z)= 1 λ E(x,y,0)U(x,y) exp(ikr) r 1+cos( n ^ , r ^ ) 2 dxdy
U(x,y)=exp{ ik(r'f) }
η ref = 1 I ref S * i ref (X,Y,fdf)dXdY

Metrics