Abstract

Based on our previous study and designed experimental AO system with a 97-element continuous surface deformable mirror, we conduct the performance analysis of a coherent free space optical communication (FSOC) system for mixing efficiency (ME), bit error rate (BER) and outage probability under different Greenwood frequency and atmospheric coherent length. The results show that the influence of the atmospheric temporal characteristics on the performance is slightly stronger than that of the spatial characteristics when the receiving aperture and the number of sub-apertures are given. This analysis result provides a reference for the design of the coherent FSOC system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency

Wei Liu, Kainan Yao, Danian Huang, Xudong Lin, Liang Wang, and Yaowen Lv
Opt. Express 24(12) 13288-13302 (2016)

Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity

Kangning Li, Jing Ma, Liying Tan, Siyuan Yu, and Chao Zhai
Appl. Opt. 55(17) 4649-4656 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Ma, J. Sun, Y. Zhi, Y. Zhou, W. Lu, P. Hou, Q. Xu, and L. Liu, “Performance analysis of pupil-matching optical differential receivers in space-to-ground laser communication,” Appl. Opt. 53(14), 3010–3018 (2014).
    [Crossref] [PubMed]
  2. K. Yao, J. Wang, X. Liu, H. Li, M. Wang, B. Cui, and S. Yu, “Pyramid wavefront sensor using a sequential operation method,” Appl. Opt. 54(13), 3894–3901 (2015).
    [Crossref]
  3. S. Wang, C. Rao, H. Xian, J. Zhang, J. Wang, and Z. Liu, “Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system,” Opt. Express 19(9), 8135–8150 (2011).
    [Crossref] [PubMed]
  4. J. Perez, S. Zvanovec, Z. Ghassemlooy, and W. O. Popoola, “Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network,” Opt. Express 22(3), 3208–3218 (2014).
    [Crossref] [PubMed]
  5. K. Yao, J. Wang, X. Liu, and W. Liu, “Closed-loop adaptive optics system with a single liquid crystal spatial light modulator,” Opt. Express 22(14), 17216–17226 (2014).
    [Crossref] [PubMed]
  6. L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
    [Crossref]
  7. W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
    [Crossref]
  8. J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik (Stuttg.) 125(20), 6142–6147 (2014).
    [Crossref]
  9. W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
    [Crossref]
  10. A. Belmonte, A. Rodríguez, F. Dios, and A. Comerón, “Phase compensation considerations on coherent, free-space laser communication system,” Proc. SPIE 6736, A11 (2007).
    [Crossref]
  11. A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16(9), 6756–6767 (2008).
    [Crossref] [PubMed]
  12. M. Li and M. Cvijetic, “Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction,” Appl. Opt. 54(6), 1453–1462 (2015).
    [Crossref] [PubMed]
  13. J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 339, 254–260 (2016).
    [Crossref]
  14. L. Zuo, Y. Ren, A. Dang, and H. Guo, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunication (IEEE, 2010), pp. 1–5.
    [Crossref]
  15. L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communication through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).
  16. C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
    [Crossref] [PubMed]
  17. C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communication,” Opt. Commun. 361, 21–24 (2016).
    [Crossref]
  18. H. Jian, D. Ke, L. Chao, Z. Peng, J. Dagang, and Y. Zhoushi, “Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication,” Opt. Express 22(13), 16000–16007 (2014).
    [Crossref] [PubMed]
  19. J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
    [Crossref]
  20. W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
    [Crossref] [PubMed]
  21. R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
  22. J. Huang, C. Liu, K. Deng, Z. Yao, H. Xian, and X. Li, “Probability of the residual wavefront variance of an adaptive optics system and its application,” Opt. Express 24(3), 2818–2829 (2016).
    [Crossref] [PubMed]
  23. S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, “Temporal Variability and Statistics of the Strehl Ratio in Adaptive-Optics Images,” Publ. Astron. Soc. Pac. 120(872), 1132–1143 (2008).
    [Crossref]
  24. J. Ma, K. Li, L. Tan, S. Yu, and Y. Cao, “Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence,” Appl. Opt. 54(25), 7575–7585 (2015).
    [Crossref] [PubMed]
  25. M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express 18(13), 13915–13926 (2010).
    [Crossref] [PubMed]

2016 (5)

L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
[Crossref]

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 339, 254–260 (2016).
[Crossref]

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communication,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
[Crossref] [PubMed]

J. Huang, C. Liu, K. Deng, Z. Yao, H. Xian, and X. Li, “Probability of the residual wavefront variance of an adaptive optics system and its application,” Opt. Express 24(3), 2818–2829 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (8)

J. Perez, S. Zvanovec, Z. Ghassemlooy, and W. O. Popoola, “Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network,” Opt. Express 22(3), 3208–3218 (2014).
[Crossref] [PubMed]

K. Yao, J. Wang, X. Liu, and W. Liu, “Closed-loop adaptive optics system with a single liquid crystal spatial light modulator,” Opt. Express 22(14), 17216–17226 (2014).
[Crossref] [PubMed]

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik (Stuttg.) 125(20), 6142–6147 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

H. Jian, D. Ke, L. Chao, Z. Peng, J. Dagang, and Y. Zhoushi, “Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication,” Opt. Express 22(13), 16000–16007 (2014).
[Crossref] [PubMed]

X. Ma, J. Sun, Y. Zhi, Y. Zhou, W. Lu, P. Hou, Q. Xu, and L. Liu, “Performance analysis of pupil-matching optical differential receivers in space-to-ground laser communication,” Appl. Opt. 53(14), 3010–3018 (2014).
[Crossref] [PubMed]

2011 (2)

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communication through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

S. Wang, C. Rao, H. Xian, J. Zhang, J. Wang, and Z. Liu, “Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system,” Opt. Express 19(9), 8135–8150 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, “Temporal Variability and Statistics of the Strehl Ratio in Adaptive-Optics Images,” Publ. Astron. Soc. Pac. 120(872), 1132–1143 (2008).
[Crossref]

A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16(9), 6756–6767 (2008).
[Crossref] [PubMed]

2007 (1)

A. Belmonte, A. Rodríguez, F. Dios, and A. Comerón, “Phase compensation considerations on coherent, free-space laser communication system,” Proc. SPIE 6736, A11 (2007).
[Crossref]

Belmonte, A.

A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16(9), 6756–6767 (2008).
[Crossref] [PubMed]

A. Belmonte, A. Rodríguez, F. Dios, and A. Comerón, “Phase compensation considerations on coherent, free-space laser communication system,” Proc. SPIE 6736, A11 (2007).
[Crossref]

Bradford, L. W.

S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, “Temporal Variability and Statistics of the Strehl Ratio in Adaptive-Optics Images,” Publ. Astron. Soc. Pac. 120(872), 1132–1143 (2008).
[Crossref]

Cao, J.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik (Stuttg.) 125(20), 6142–6147 (2014).
[Crossref]

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

Cao, Y.

Chao, L.

Chen, L.

L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
[Crossref]

Chen, M.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communication,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

Chen, S.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communication,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

Chen, W.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 339, 254–260 (2016).
[Crossref]

Cheng, J.

Chi, X.

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

Christou, J. C.

S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, “Temporal Variability and Statistics of the Strehl Ratio in Adaptive-Optics Images,” Publ. Astron. Soc. Pac. 120(872), 1132–1143 (2008).
[Crossref]

Comerón, A.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comerón, “Phase compensation considerations on coherent, free-space laser communication system,” Proc. SPIE 6736, A11 (2007).
[Crossref]

Cui, B.

Cvijetic, M.

Dagang, J.

Dang, A.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communication through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

L. Zuo, Y. Ren, A. Dang, and H. Guo, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunication (IEEE, 2010), pp. 1–5.
[Crossref]

Deng, K.

J. Huang, C. Liu, K. Deng, Z. Yao, H. Xian, and X. Li, “Probability of the residual wavefront variance of an adaptive optics system and its application,” Opt. Express 24(3), 2818–2829 (2016).
[Crossref] [PubMed]

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Dios, F.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comerón, “Phase compensation considerations on coherent, free-space laser communication system,” Proc. SPIE 6736, A11 (2007).
[Crossref]

Gao, J.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 339, 254–260 (2016).
[Crossref]

Ghassemlooy, Z.

Gladysz, S.

S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, “Temporal Variability and Statistics of the Strehl Ratio in Adaptive-Optics Images,” Publ. Astron. Soc. Pac. 120(872), 1132–1143 (2008).
[Crossref]

Guo, H.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communication through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

L. Zuo, Y. Ren, A. Dang, and H. Guo, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunication (IEEE, 2010), pp. 1–5.
[Crossref]

Holzman, J. F.

Hou, P.

Huang, D.

Huang, J.

J. Huang, C. Liu, K. Deng, Z. Yao, H. Xian, and X. Li, “Probability of the residual wavefront variance of an adaptive optics system and its application,” Opt. Express 24(3), 2818–2829 (2016).
[Crossref] [PubMed]

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Jian, H.

Kang, L.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Ke, D.

Li, H.

Li, J.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 339, 254–260 (2016).
[Crossref]

Li, K.

Li, M.

Li, X.

Li, Z.

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik (Stuttg.) 125(20), 6142–6147 (2014).
[Crossref]

Lin, X.

L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
[Crossref]

W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
[Crossref] [PubMed]

Liu, C.

Liu, L.

Liu, W.

W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
[Crossref] [PubMed]

K. Yao, J. Wang, X. Liu, and W. Liu, “Closed-loop adaptive optics system with a single liquid crystal spatial light modulator,” Opt. Express 22(14), 17216–17226 (2014).
[Crossref] [PubMed]

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik (Stuttg.) 125(20), 6142–6147 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

Liu, X.

Liu, Z.

Lu, W.

Lv, Y.

W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
[Crossref] [PubMed]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

Ma, J.

Ma, X.

Mei, H.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Niu, M.

Peng, Z.

Perez, J.

Popoola, W. O.

Rao, C.

Ren, Y.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communication through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

L. Zuo, Y. Ren, A. Dang, and H. Guo, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunication (IEEE, 2010), pp. 1–5.
[Crossref]

Roberts, L. C.

S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, “Temporal Variability and Statistics of the Strehl Ratio in Adaptive-Optics Images,” Publ. Astron. Soc. Pac. 120(872), 1132–1143 (2008).
[Crossref]

Rodríguez, A.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comerón, “Phase compensation considerations on coherent, free-space laser communication system,” Proc. SPIE 6736, A11 (2007).
[Crossref]

Shi, W.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

Song, Y.

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik (Stuttg.) 125(20), 6142–6147 (2014).
[Crossref]

Sun, J.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 339, 254–260 (2016).
[Crossref]

X. Ma, J. Sun, Y. Zhi, Y. Zhou, W. Lu, P. Hou, Q. Xu, and L. Liu, “Performance analysis of pupil-matching optical differential receivers in space-to-ground laser communication,” Appl. Opt. 53(14), 3010–3018 (2014).
[Crossref] [PubMed]

Tan, L.

Wang, J.

L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
[Crossref]

K. Yao, J. Wang, X. Liu, H. Li, M. Wang, B. Cui, and S. Yu, “Pyramid wavefront sensor using a sequential operation method,” Appl. Opt. 54(13), 3894–3901 (2015).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

K. Yao, J. Wang, X. Liu, and W. Liu, “Closed-loop adaptive optics system with a single liquid crystal spatial light modulator,” Opt. Express 22(14), 17216–17226 (2014).
[Crossref] [PubMed]

S. Wang, C. Rao, H. Xian, J. Zhang, J. Wang, and Z. Liu, “Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system,” Opt. Express 19(9), 8135–8150 (2011).
[Crossref] [PubMed]

Wang, L.

W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
[Crossref] [PubMed]

L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
[Crossref]

Wang, M.

L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
[Crossref]

K. Yao, J. Wang, X. Liu, H. Li, M. Wang, B. Cui, and S. Yu, “Pyramid wavefront sensor using a sequential operation method,” Appl. Opt. 54(13), 3894–3901 (2015).
[Crossref]

Wang, S.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

S. Wang, C. Rao, H. Xian, J. Zhang, J. Wang, and Z. Liu, “Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system,” Opt. Express 19(9), 8135–8150 (2011).
[Crossref] [PubMed]

Wu, P.

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

Xian, H.

Xu, Q.

Yao, K.

W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
[Crossref] [PubMed]

L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
[Crossref]

K. Yao, J. Wang, X. Liu, H. Li, M. Wang, B. Cui, and S. Yu, “Pyramid wavefront sensor using a sequential operation method,” Appl. Opt. 54(13), 3894–3901 (2015).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

K. Yao, J. Wang, X. Liu, and W. Liu, “Closed-loop adaptive optics system with a single liquid crystal spatial light modulator,” Opt. Express 22(14), 17216–17226 (2014).
[Crossref] [PubMed]

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

Yao, Z.

J. Huang, C. Liu, K. Deng, Z. Yao, H. Xian, and X. Li, “Probability of the residual wavefront variance of an adaptive optics system and its application,” Opt. Express 24(3), 2818–2829 (2016).
[Crossref] [PubMed]

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Yu, S.

Zhang, J.

Zhang, Z.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 339, 254–260 (2016).
[Crossref]

Zhao, X.

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik (Stuttg.) 125(20), 6142–6147 (2014).
[Crossref]

Zhi, Y.

Zhou, Y.

Zhoushi, Y.

Zhu, W.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Zuo, L.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communication through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

L. Zuo, Y. Ren, A. Dang, and H. Guo, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunication (IEEE, 2010), pp. 1–5.
[Crossref]

Zvanovec, S.

Appl. Opt. (4)

IEEE Photonics J. (1)

L. Chen, J. Wang, K. Yao, X. Liu, X. Lin, L. Wang, and M. Wang, “Experimental demonstration of sequential operation approach for three-sided pyramid wavefront sensor,” IEEE Photonics J. 8(4), 2701113 (2016).
[Crossref]

Opt. Commun. (4)

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 339, 254–260 (2016).
[Crossref]

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communication through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communication,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Opt. Express (9)

W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
[Crossref] [PubMed]

H. Jian, D. Ke, L. Chao, Z. Peng, J. Dagang, and Y. Zhoushi, “Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication,” Opt. Express 22(13), 16000–16007 (2014).
[Crossref] [PubMed]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

S. Wang, C. Rao, H. Xian, J. Zhang, J. Wang, and Z. Liu, “Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system,” Opt. Express 19(9), 8135–8150 (2011).
[Crossref] [PubMed]

J. Perez, S. Zvanovec, Z. Ghassemlooy, and W. O. Popoola, “Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network,” Opt. Express 22(3), 3208–3218 (2014).
[Crossref] [PubMed]

K. Yao, J. Wang, X. Liu, and W. Liu, “Closed-loop adaptive optics system with a single liquid crystal spatial light modulator,” Opt. Express 22(14), 17216–17226 (2014).
[Crossref] [PubMed]

M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express 18(13), 13915–13926 (2010).
[Crossref] [PubMed]

J. Huang, C. Liu, K. Deng, Z. Yao, H. Xian, and X. Li, “Probability of the residual wavefront variance of an adaptive optics system and its application,” Opt. Express 24(3), 2818–2829 (2016).
[Crossref] [PubMed]

A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16(9), 6756–6767 (2008).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

Optik (Stuttg.) (2)

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik (Stuttg.) 125(20), 6142–6147 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

Proc. SPIE (1)

A. Belmonte, A. Rodríguez, F. Dios, and A. Comerón, “Phase compensation considerations on coherent, free-space laser communication system,” Proc. SPIE 6736, A11 (2007).
[Crossref]

Publ. Astron. Soc. Pac. (1)

S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, “Temporal Variability and Statistics of the Strehl Ratio in Adaptive-Optics Images,” Publ. Astron. Soc. Pac. 120(872), 1132–1143 (2008).
[Crossref]

Other (2)

L. Zuo, Y. Ren, A. Dang, and H. Guo, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunication (IEEE, 2010), pp. 1–5.
[Crossref]

R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Coherent FSOC system.
Fig. 2
Fig. 2 ME versus CLCB when GF = 90 Hz.
Fig. 3
Fig. 3 BER versus CLCB when GF = 90 Hz.
Fig. 4
Fig. 4 Structure of our experiment system.
Fig. 5
Fig. 5 Photo of our experiment system.
Fig. 6
Fig. 6 Far field images before and after correction (r0 = 5 cm) with different GF, where are the images when GF = 10 Hz to GF = 100 Hz from (a) to (j).
Fig. 7
Fig. 7 Far field images before and after correction (GF = 60 Hz) with different r0, where (a) is r0 = 5 cm, (b) is r0 = 7 cm, (c) is r0 = 9 cm and (d) is r0 = 11 cm.
Fig. 8
Fig. 8 ME versus iteration number when r0 = 5 cm with different GF.
Fig. 9
Fig. 9 ME versus iteration number when GF = 60 Hz with different r0.
Fig. 10
Fig. 10 Outage probability after AO correction versus GF when r0 is 5 cm.

Tables (5)

Tables Icon

Table 1 BER before and after when r0 = 5 cm with different GF.

Tables Icon

Table 2 BER after correction when GF = 60 Hz with different r0.

Tables Icon

Table 3 Experimental results under different GF and r0.

Tables Icon

Table 4 BER before and after correction when r0 = 5 cm and Np = 20 with different GF.

Tables Icon

Table 5 BER after correction when GF = 60 Hz and Np = 10 with different r0.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E S = A S E i(2π f S t+ φ S )
E LO = A O E i(2π f O t+ φ O )
I= S ( E LO + E S ) ( E LO + E S ) * ds
I= S { A O 2 + A S 2 +2 A O A S cos[ 2π( f S f O )+Δφ ] }ds
Δφ=φ(r)+φ(t)
η= [ S A S A O cos(Δφ)ds ] 2 S A S 2 ds S A O 2 ds
E( σ φ 2 )=[ α F ( d r 0 ) 5/3 +κ ( f G f 3dB ) 5/3 ](rad)
ηSR=exp{ [ α F ( d r 0 ) 5/3 +κ ( f G f 3dB ) 5/3 ] }
BER= 1 2 erfc( Q 2 )
P S = N P hνB
SNR 0 = 2δ P S hνB =2δ N P
BER= 1 2 erfc( 2δ N P η )
P outage ( γ T )=Pr{ γ< γ T }= 0 γ T f γ ( γ ) dγ
D r 0 = D t r 0t

Metrics