Abstract

In this paper, a novel kind of sensors for simultaneous measurement of refractive index and temperature based on all-dielectric metasurfaces is proposed. The metasurfaces are constructed by an array of silicon nanoblocks on top of the bulk fused silica substrate. We used three-dimensional full wave electromagnetic field simulation by finite integral method to accurately calculate the transmission spectrum of the metasurfaces. Two transmission dips corresponding to the electric and magnetic resonances are observed. Both dips shift as the ambient refractive index or the temperature changes. Simulation results show that the sensing sensitivities of two dips to the refractive index are 243.44 nm/RIU and 159.43 nm/RIU, respectively, while the sensitivities to the temperature are 50.47 pm/°C and 75.20 pm/°C, respectively. After introducing four holes into each silicon nanoblock, the electromagnetic field overlap in the surrounding medium can be further promoted, and the sensitivities to the refractive index increase to 306.71 nm/RIU and 204.27 nm/RIU, respectively. Our proposed sensors have advantages of polarization insensitive, small size, and low loss, which offer them high potential applications in physical, biological and chemical sensing fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature

Tiegen Liu, Yaofei Chen, Qun Han, Fangchao Liu, and Yunzhi Yao
Appl. Opt. 55(4) 791-795 (2016)

Simultaneous measurement of refractive index, strain, and temperature based on a Mach–Zehnder interferometer with hybrid structure optical fiber

Xuekai Gao, Tigang Ning, Jingjing Zheng, Jing Li, Li Pei, Chuanbiao Zhang, Ling Liu, and Xueqing He
Appl. Opt. 58(30) 8187-8193 (2019)

Research on simultaneous measurement of temperature and refractive index based on thin-core fiber and pokal taper

Yimei Zhong, Juan Qin, Zhengrong Tong, Weihua Zhang, Wei Huang, and Wenlin Gao
Appl. Opt. 58(8) 1955-1960 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Nemova and R. Kashyap, “Silica bottle resonator sensor for refractive index and temperature measurements,” Sensors (Basel) 16(1), 87 (2016).
    [Crossref] [PubMed]
  2. Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
    [Crossref]
  3. Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
    [Crossref]
  4. T. Liu, Y. Chen, Q. Han, F. Liu, and Y. Yao, “Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature,” Appl. Opt. 55(4), 791–795 (2016).
    [Crossref] [PubMed]
  5. M. Xiong, H. Gong, Z. Wang, C. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on Mach-Zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 1 (2016).
    [Crossref]
  6. R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
    [Crossref] [PubMed]
  7. L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location,” IEEE Photonics Technol. Lett. 28(8), 891–894 (2016).
    [Crossref]
  8. L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
    [Crossref]
  9. H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
    [Crossref]
  10. Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
    [Crossref]
  11. H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express 18(12), 13072–13082 (2010).
    [Crossref] [PubMed]
  12. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
    [Crossref]
  13. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  14. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  15. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  16. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
    [Crossref] [PubMed]
  17. G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
    [Crossref]
  18. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  19. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  20. Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
    [Crossref] [PubMed]
  21. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  22. O. Hess and K. L. Tsakmakidis, “Applied physics. Metamaterials with quantum gain,” Science 339(6120), 654–655 (2013).
    [Crossref] [PubMed]
  23. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  24. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
    [Crossref] [PubMed]
  25. A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B Condens. Matter 77(4), 5104 (2008).
    [Crossref]
  26. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
    [Crossref] [PubMed]
  27. Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
    [Crossref] [PubMed]
  28. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter 82(4), 2181–2188 (2010).
    [Crossref]
  29. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
    [Crossref] [PubMed]
  30. N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
    [Crossref] [PubMed]
  31. L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
    [Crossref]
  32. Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
    [Crossref]
  33. J. Zou, Z. Le, and J. J. He, “Temperature self-compensated optical waveguide biosensor based on cascade of ring resonator and arrayed waveguide grating spectrometer,” J. Lightwave Technol. 34(21), 4856–4863 (2016).
    [Crossref]

2016 (12)

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

G. Nemova and R. Kashyap, “Silica bottle resonator sensor for refractive index and temperature measurements,” Sensors (Basel) 16(1), 87 (2016).
[Crossref] [PubMed]

Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
[Crossref]

L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location,” IEEE Photonics Technol. Lett. 28(8), 891–894 (2016).
[Crossref]

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

M. Xiong, H. Gong, Z. Wang, C. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on Mach-Zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 1 (2016).
[Crossref]

T. Liu, Y. Chen, Q. Han, F. Liu, and Y. Yao, “Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature,” Appl. Opt. 55(4), 791–795 (2016).
[Crossref] [PubMed]

R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
[Crossref] [PubMed]

J. Zou, Z. Le, and J. J. He, “Temperature self-compensated optical waveguide biosensor based on cascade of ring resonator and arrayed waveguide grating spectrometer,” J. Lightwave Technol. 34(21), 4856–4863 (2016).
[Crossref]

2015 (2)

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

2014 (2)

Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (3)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

O. Hess and K. L. Tsakmakidis, “Applied physics. Metamaterials with quantum gain,” Science 339(6120), 654–655 (2013).
[Crossref] [PubMed]

2012 (5)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
[Crossref]

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
[Crossref]

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

2010 (2)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter 82(4), 2181–2188 (2010).
[Crossref]

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express 18(12), 13072–13082 (2010).
[Crossref] [PubMed]

2008 (2)

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B Condens. Matter 77(4), 5104 (2008).
[Crossref]

2007 (1)

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

1984 (1)

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Ahmadi, A.

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B Condens. Matter 77(4), 5104 (2008).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

André, R. M.

Bai, Y.

Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
[Crossref]

Bartelt, H.

Becker, M.

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Cao, W.

Cao, Y.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Chen, H. F.

L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location,” IEEE Photonics Technol. Lett. 28(8), 891–894 (2016).
[Crossref]

Chen, N.

Chen, Y.

Chen, Z.

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter 82(4), 2181–2188 (2010).
[Crossref]

Dellith, J.

Dong, G.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Dong, X.

M. Xiong, H. Gong, Z. Wang, C. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on Mach-Zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 1 (2016).
[Crossref]

Edwardson, S. P.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter 82(4), 2181–2188 (2010).
[Crossref]

Frazão, O.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, Y.

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Gong, H.

M. Xiong, H. Gong, Z. Wang, C. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on Mach-Zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 1 (2016).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
[Crossref]

Grzegorczyk, T. M.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Gu, Z.

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

Guo, H.

Guo, W.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Halas, N. J.

Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Han, Q.

Hao, L.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
[Crossref]

He, J. J.

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Hess, O.

O. Hess and K. L. Tsakmakidis, “Applied physics. Metamaterials with quantum gain,” Science 339(6120), 654–655 (2013).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
[Crossref]

Huang, B.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Huang, X.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jian, S.

Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Kashyap, R.

G. Nemova and R. Kashyap, “Silica bottle resonator sensor for refractive index and temperature measurements,” Sensors (Basel) 16(1), 87 (2016).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Kong, J. A.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Kong, Y.

Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Latifi, H.

Le, Z.

Li, L.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
[Crossref]

L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Li, X.

L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
[Crossref]

Lian, Y.

Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
[Crossref]

Liao, Z.

L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
[Crossref]

Litchinitser, N. M.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Liu, C.

Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
[Crossref]

Liu, D.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
[Crossref]

L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
[Crossref]

Liu, F.

Liu, H.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express 18(12), 13072–13082 (2010).
[Crossref] [PubMed]

Liu, J.

L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location,” IEEE Photonics Technol. Lett. 28(8), 891–894 (2016).
[Crossref]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Liu, S.

Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
[Crossref]

Liu, T.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter 82(4), 2181–2188 (2010).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Maier, S. A.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Marques, M. B.

Meng, H.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

Mosallaei, H.

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B Condens. Matter 77(4), 5104 (2008).
[Crossref]

Nemova, G.

G. Nemova and R. Kashyap, “Silica bottle resonator sensor for refractive index and temperature measurements,” Sensors (Basel) 16(1), 87 (2016).
[Crossref] [PubMed]

Nikolskiy, K.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Nordlander, P.

Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
[Crossref]

Okada, Y.

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Pandey, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Pang, F.

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Qian, W.

Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
[Crossref]

Qiu, P.

Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
[Crossref]

Quan, W.

Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
[Crossref]

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter 82(4), 2181–2188 (2010).
[Crossref]

Rothhardt, M.

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter 82(4), 2181–2188 (2010).
[Crossref]

Shalaev, M. I.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shi, H.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Shuai, B.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
[Crossref]

Song, Q.

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Su, J.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Sun, J.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Sun, S.

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

Tan, C.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tokumaru, Y.

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Tong, Z.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Tsakmakidis, K. L.

O. Hess and K. L. Tsakmakidis, “Applied physics. Metamaterials with quantum gain,” Science 339(6120), 654–655 (2013).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Tsukernik, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Tu, F.

L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Wang, D. N.

L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location,” IEEE Photonics Technol. Lett. 28(8), 891–894 (2016).
[Crossref]

Wang, H.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Wang, K.

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

Wang, Q.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Wang, S.

Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
[Crossref]

Wang, T.

Wang, Z.

M. Xiong, H. Gong, Z. Wang, C. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on Mach-Zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 1 (2016).
[Crossref]

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Warren-Smith, S. C.

Watkins, K. G.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Wei, Q.

Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
[Crossref]

Wei, X.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Wen, F.

Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

Whitehead, D. J.

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

Xia, L.

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
[Crossref]

Xia, S.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Xiao, S.

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

Xie, Z.

L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
[Crossref]

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
[Crossref]

Xiong, M.

M. Xiong, H. Gong, Z. Wang, C. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on Mach-Zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 1 (2016).
[Crossref]

Xiong, R.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Xu, Z.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Yao, Y.

Yi, N.

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

Yin, B.

Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, W.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Yuan, S.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Zhang, A.

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location,” IEEE Photonics Technol. Lett. 28(8), 891–894 (2016).
[Crossref]

Zhang, X.

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

Zhao, C.

M. Xiong, H. Gong, Z. Wang, C. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on Mach-Zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 1 (2016).
[Crossref]

Zhen, Y. R.

Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

Zibaii, M. I.

Zou, J.

Appl. Opt. (1)

IEEE Antennas Propag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. 54(2), 10–35 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Zhang, D. N. Wang, J. Liu, and H. F. Chen, “Simultaneous refractive index and temperature sensing with precise sensing location,” IEEE Photonics Technol. Lett. 28(8), 891–894 (2016).
[Crossref]

Y. Bai, B. Yin, C. Liu, S. Liu, Y. Lian, and S. Jian, “Simultaneous Measurement of Refractive Index and Temperature Based on NFN Structure,” IEEE Photonics Technol. Lett. 26(21), 2193–2196 (2014).
[Crossref]

IEEE Sens. J. (1)

M. Xiong, H. Gong, Z. Wang, C. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on Mach-Zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 1 (2016).
[Crossref]

J. Appl. Phys. (1)

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

J. Chem. Phys. (1)

Z. B. Wang, B. S. Luk’yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128(9), 094705 (2008).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Nano Lett. (1)

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (3)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Opt. Commun. (5)

G. Dong, H. Shi, S. Xia, A. Zhang, Z. Xu, and X. Wei, “Ultra-broadband perfect cross polarization conversion metasurface,” Opt. Commun. 365, 108–112 (2016).
[Crossref]

Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, and W. Qian, “Refractive index and temperature nanosensor with plasmonic waveguide system,” Opt. Commun. 371, 132–137 (2016).
[Crossref]

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

L. Li, X. Li, Z. Xie, Z. Liao, F. Tu, and D. Liu, “Simultaneous measurement of refractive index and temperature using thinned fiber based Mach–Zehnder interferometer,” Opt. Commun. 285(19), 3945–3949 (2012).
[Crossref]

H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
[Crossref]

Opt. Express (2)

Phys. Rev. B Condens. Matter (2)

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B Condens. Matter 77(4), 5104 (2008).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter 82(4), 2181–2188 (2010).
[Crossref]

Phys. Rev. Lett. (2)

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U.S.A. 110(23), 9215–9219 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

N. Yi, S. Sun, Y. Gao, K. Wang, Z. Gu, S. Sun, Q. Song, and S. Xiao, “Large-scale and defect-free silicon metamaterials with magnetic response,” Sci. Rep. 6(1), 25760 (2016).
[Crossref] [PubMed]

Science (4)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref] [PubMed]

O. Hess and K. L. Tsakmakidis, “Applied physics. Metamaterials with quantum gain,” Science 339(6120), 654–655 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

L. Li, L. Xia, Z. Xie, L. Hao, B. Shuai, and D. Liu, “In-line fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sens. Actuators A Phys. 180, 19–24 (2012).
[Crossref]

Sensors (Basel) (1)

G. Nemova and R. Kashyap, “Silica bottle resonator sensor for refractive index and temperature measurements,” Sensors (Basel) 16(1), 87 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the metasurface sensor 1. The incident light is a plane wave of transverse electric (TE) mode. (b) Transmission spectrum of the metasurface sensor 1 showing two dips for magnetic (λM ≈1.42 μm) and electric (λE ≈1.63 μm) resonances. (c) Electric field distributions at λM ≈1.42 μm in a unit cell in the y-z plane. (d) Magnetic field distributions at λM ≈1.42 μm in a unit cell in the x-z plane. (e) Electric field distributions at λE ≈1.63 μm in a unit cell in the y-z plane. (f) Magnetic field distributions at λE ≈1.63 μm in a unit cell in the x-z plane. The arrows indicate the direction of the electric and magnetic fields.
Fig. 2
Fig. 2 The relationship between the resonant wavelength of the electric and magnetic dipoles with the structural parameters of (a) the side length a, (b) the thickness t, (c) the transverse period px, and (d) the longitudinal period py. The fitting equations are also shown in the figures.
Fig. 3
Fig. 3 (a) The transmission spectra of the metasurface sensor 1 covered with different RI materials. (b) Linear fit of the relationship curves between the wavelength shift of two resonance dips and the external refractive index. (c) The transmission spectra of the metasurface sensor 1 with different temperature. The insets are partial enlarged details of two dips. (d) Corresponding linear fit to the relationship curves between the wavelength shift of two dips and the external temperature.
Fig. 4
Fig. 4 (a) Schematic of the metasurface sensor 2. (b) Transmission spectrum of the metasurface sensor 2 showing two dips for magnetic (λM ≈1.30 μm) and electric (λE≈1.54 μm) resonances. (c) Electric field distributions at λM≈1.30 μm in a unit cell in y-z plane. (d) Magnetic field distributions at λM≈1.30 μm in a unit cell in the x-z plane. (e) Electric field distributions at λE≈1.54 μm in a unit cell in y-z plane. (f) Magnetic field distributions at λE≈1.54 μm in a unit cell in x-z plane. The arrows indicate the direction of the electric and magnetic fields.
Fig. 5
Fig. 5 (a) The transmission spectra of the metasurface sensor 2 covered with different RI materials. (b) Linear fit of the relationship curves between the wavelength shift of two resonance dips and the external refractive index. (c) The transmission spectra of the metasurface sensor 2 with different temperature. The insets are partial enlarged details of two dips. (d) Corresponding linear fit to the relationship curves between the wavelength shift of two dips and the external temperature.
Fig. 6
Fig. 6 Calculated cross-sectional electric field distributions in one unit in the x-y plane of (a) metasurface sensor 1 and (b) metasurface sensor 2 at the electric resonance wavelength.
Fig. 7
Fig. 7 Transmission spectra of metasurface sensor 2 at different polarization angle of incident light.

Tables (1)

Tables Icon

Table 1 Comparison of the Existing dual-parameter sensors

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d λ i dn ×Δn+ d λ i dn × dn dT ×ΔT+ d λ i dT ×ΔT=Δ λ i ( i=1, 2 )
[ Δn+ dn dT ×ΔT ΔT ]= [ K n,1 K T,1 K n,2 K T,2 ] 1 [ Δ λ 1 Δ λ 2 ]
dn dT = K T,2 ×Δ λ 1 K T,1 ×Δ λ 2 K n,1 ×Δ λ 2 K n,2 ×Δ λ 1
K T,i = K ˜ T,i K n,i × dn dT ( i= 1, 2 )
[ Δn+ dn dT ×ΔT ΔT ]= [ 243.44nm/RIU 50.47pm / C 159.43nm/RIU 75.20pm / C ] 1 [ Δ λ 1 Δ λ 2 ]
FO M i,j = S i,j FWH M i
[ Δn+ dn dT ×ΔT ΔT ]= [ 306.71nm/RIU 35.45pm/ 204.27nm/RIU 66.89pm/ ] 1 [ Δ λ 1 Δ λ 2 ]

Metrics