Abstract

We report a polarization-multiplexed 320 Gbaud, 64 QAM coherent Nyquist pulse transmission with a frequency-stabilized mode-locked laser and a modified digital back-propagation method for pulse transmission. Using a combination consisting of a mode-locked laser and a pulse shaper, we obtained a Nyquist pulse with a high OSNR of 51 dB. We achieved error free operation under a back-to-back condition with the OSNR improvement. By developing a new digital back-propagation method for pulse propagation, we achieved a bit error rate below the 7% forward error correction limit of 2x10−3 for all the tributaries of the OTDM signal data after a 150 km transmission. As a result, single-channel 3.84 Tbit/s data were successfully transmitted over 150 km with a spectral efficiency of 10.6 bit/s/Hz.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz

Kosuke Kimura, Junpei Nitta, Masato Yoshida, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 26(13) 17418-17428 (2018)

Single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz

David Odeke Otuya, Keisuke Kasai, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 22(20) 23776-23785 (2014)

Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km

Toshihiko Hirooka, Ryoya Hirata, Jianping Wang, Masato Yoshida, and Masataka Nakazawa
Opt. Express 26(21) 27221-27236 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Raybon, J. Cho, A. Adamiecki, P. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. K. Fontaine, and E. Burrows, “Single carrier high symbol rate transmitter for data rates up to 1.0 Tb/s,” in Proceedings of Optical Fiber Conference (OFC, 2016), Th3A.2.
    [Crossref]
  2. H. Yamazaki, A. Sano, M. Nagatani, and Y. Miyamoto, “Single-carrier 1-Tb/s PDM-16QAM transmission using high-speed InP MUX-DACs and an integrated OTDM modulator,” Opt. Express 23(10), 12866–12873 (2015).
    [Crossref] [PubMed]
  3. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  4. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Proceedings of the Conference on Laser and Electro-Optics (CLEO, 2013), CTh5D.5.
    [Crossref]
  5. D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses” in Proceedings of the European Conference on Optical Communication (ECOC, 2016), paper W.4.P1.SC5.49.
  6. D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. 34(2), 768–775 (2016).
    [Crossref]
  7. M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express 24(21), 24287–24296 (2016).
    [Crossref] [PubMed]
  8. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [Crossref] [PubMed]
  9. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optimization of electro-optic comb generation conventional Mach-Zehnder modulator,” in Proceedings of IEEE Topical Meeting Microwave Photonics (IEEE, 2007), pp. 50–53.
    [Crossref]
  10. K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
    [Crossref]
  11. K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express 22(24), 29456–29464 (2014).
    [Crossref] [PubMed]
  12. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

2014 (1)

2012 (1)

2010 (1)

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

2007 (1)

Beppu, S.

Guan, P.

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

Harako, K.

Hirooka, T.

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optimization of electro-optic comb generation conventional Mach-Zehnder modulator,” in Proceedings of IEEE Topical Meeting Microwave Photonics (IEEE, 2007), pp. 50–53.
[Crossref]

Kasai, K.

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optimization of electro-optic comb generation conventional Mach-Zehnder modulator,” in Proceedings of IEEE Topical Meeting Microwave Photonics (IEEE, 2007), pp. 50–53.
[Crossref]

Miyamoto, Y.

Nagatani, M.

Nakazawa, M.

Omiya, T.

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

Otuya, D. O.

Ruan, P.

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optimization of electro-optic comb generation conventional Mach-Zehnder modulator,” in Proceedings of IEEE Topical Meeting Microwave Photonics (IEEE, 2007), pp. 50–53.
[Crossref]

Sano, A.

Yamazaki, H.

Yoshida, K.

Yoshida, M.

IEEE Photonics Technol. Lett. (1)

K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photonics Technol. Lett. 22(8), 562–564 (2010).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (1)

Other (4)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optimization of electro-optic comb generation conventional Mach-Zehnder modulator,” in Proceedings of IEEE Topical Meeting Microwave Photonics (IEEE, 2007), pp. 50–53.
[Crossref]

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Proceedings of the Conference on Laser and Electro-Optics (CLEO, 2013), CTh5D.5.
[Crossref]

D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses” in Proceedings of the European Conference on Optical Communication (ECOC, 2016), paper W.4.P1.SC5.49.

G. Raybon, J. Cho, A. Adamiecki, P. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. K. Fontaine, and E. Burrows, “Single carrier high symbol rate transmitter for data rates up to 1.0 Tb/s,” in Proceedings of Optical Fiber Conference (OFC, 2016), Th3A.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Configuration of a conventional Nyquist pulse source combining a CW laser and an optical comb generator.
Fig. 2
Fig. 2 Optical spectrum of the output signal from the comb generator (a) before and (b) after amplification with an EDFA, (c) optical spectrum and (d) waveform after pulse shaping.
Fig. 3
Fig. 3 Configuration of Nyquist pulse source with MLFL.
Fig. 4
Fig. 4 Optical spectrum and waveform of the MLFL output pulse (b), (c) before and (d), (e) after pulse shaping.
Fig. 5
Fig. 5 Experimental setup for 3.84 Tbit/s, 64 QAM coherent optical Nyquist pulse transmission.
Fig. 6
Fig. 6 Constellations of demultiplexed 10 Gbaud, 64 QAM signals under back-to-back condition obtained with (a) conventional and (b) new pulse sources.
Fig. 7
Fig. 7 Schematic diagrams of modified DBP method with all tributary pulses. (a) Using a digital MUX circuit (Scheme A), (b) receiving all the tributary pulses (Scheme B).
Fig. 8
Fig. 8 BER of demultiplexed 10 Gbaud, 64 QAM signal after a 150 km transmission as a function of launch power.
Fig. 9
Fig. 9 Optical spectra (a) before and (b) after 150 km transmission.
Fig. 10
Fig. 10 (a) IF spectrum and (b) SSB phase noise spectrum in an OPLL circuit.
Fig. 11
Fig. 11 (a) BER characteristics of demultiplexed 10 Gbaud, 64 QAM signal as a function of the OSNR, (b) constellation of the signal with an OSNR 31 dB after 150 km transmission.
Fig. 12
Fig. 12 BER characteristics for all the tributaries after a 150 km transmission.

Metrics