Abstract

We demonstrate a novel single-shot distributed Brillouin optical time domain analyzer (SS-BOTDA). In our method, dual-polarization probe with orthogonal frequency-division multiplexing (OFDM) modulation is used to acquire the distributed Brillouin gain spectra, and coherent detection is used to enhance the signal-to-noise ratio (SNR) drastically. Distributed temperature sensing is demonstrated over a 1.08 km standard single-mode fiber (SSMF) with 20.48 m spatial resolution and 0.59 °C temperature accuracy. Neither frequency scanning, nor polarization scrambling, nor averaging is required in our scheme. All the data are obtained through only one-shot measurement, indicating that the sensing speed is only limited by the length of fiber.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer

Chao Jin, Liang Wang, Yuli Chen, Nan Guo, Wenghong Chung, Hoyin Au, Zhaohui Li, Hwa-Yaw Tam, and Chao Lu
Opt. Express 25(8) 9213-9224 (2017)

Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers

Wenqiao Lin, Zhisheng Yang, Xiaobin Hong, Sheng Wang, and Jian Wu
Opt. Express 25(7) 7604-7615 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  2. X. Bao and L. Chen, “Recent Progress in Brillouin Scattering Based Fiber Sensors,” Sensors (Basels) 11(12), 4152–4187 (2011).
    [Crossref]
  3. L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. China 3(1), 13–21 (2010).
    [Crossref]
  4. A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87, 011501 (2016).
    [Crossref] [PubMed]
  5. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  6. D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
    [Crossref]
  7. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  8. J. Urricelqui, M. Sagues, and A. Loayssa, “BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation,” Opt. Express 21(14), 17186–17194 (2013).
    [Crossref] [PubMed]
  9. C. Jin, N. Guo, Y. Feng, L. Wang, H. Liang, J. Li, Z. Li, C. Yu, and C. Lu, “Scanning-free BOTDA based on ultra-fine digital optical frequency comb,” Opt. Express 23(4), 5277–5284 (2015).
    [Crossref] [PubMed]
  10. J. Fang, P. Xu, and W. Shieh, “Single-shot measurement of stimulated Brillouin spectrum by using OFDM probe and coherent detection,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), AT5C.3.
    [Crossref]
  11. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  12. Q. Yang, A. A. Amin, and W. Shieh, “Optical OFDM Basics,” in Impact of Nonlinearities on Fiber Optic Communications, S. Kumar, ed. (SpringerNew York, New York, NY, 2011), pp. 43–85.
    [Crossref]
  13. J. Urricelqui, F. López-Fernandino, M. Sagues, and A. Loayssa, “Polarization Diversity Scheme for BOTDA Sensors Based on a Double Orthogonal Pump Interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
    [Crossref]
  14. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [Crossref]
  15. A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Precision of a Brillouin-scattering-based distributed strain sensor,” Proc. SPIE 3670, 359 (1999).
    [Crossref]
  16. A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
    [Crossref]
  17. N. Kaneda, T. Pfau, H. Zhang, J. Lee, Y.-K. Chen, C. J. Youn, Y. H. Kwon, E. S. Num, and S. Chandrasekhar, “Field Demonstration of 100-Gb/s Real-Time Coherent Optical OFDM Detection,” J. Lightwave Technol. 33(7) 1365–1372 (2015).
    [Crossref]
  18. A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
    [Crossref] [PubMed]
  19. M. G. Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006).
    [Crossref]
  20. J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing” in Proceedings of IEEE Sensors 2016 (IEEE, 2016), B4L-C, pp. 1–3.

2017 (1)

2016 (3)

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87, 011501 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (1)

2012 (1)

2011 (3)

2010 (1)

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. China 3(1), 13–21 (2010).
[Crossref]

2008 (1)

2006 (1)

1999 (1)

A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Precision of a Brillouin-scattering-based distributed strain sensor,” Proc. SPIE 3670, 359 (1999).
[Crossref]

1994 (1)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Amin, A. A.

Q. Yang, A. A. Amin, and W. Shieh, “Optical OFDM Basics,” in Impact of Nonlinearities on Fiber Optic Communications, S. Kumar, ed. (SpringerNew York, New York, NY, 2011), pp. 43–85.
[Crossref]

Angulo-Vinuesa, X.

Ba, D.

Bao, H.

Bao, X.

X. Bao and L. Chen, “Recent Progress in Brillouin Scattering Based Fiber Sensors,” Sensors (Basels) 11(12), 4152–4187 (2011).
[Crossref]

A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Precision of a Brillouin-scattering-based distributed strain sensor,” Proc. SPIE 3670, 359 (1999).
[Crossref]

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Bremner, T. W.

A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Precision of a Brillouin-scattering-based distributed strain sensor,” Proc. SPIE 3670, 359 (1999).
[Crossref]

Brown, A. W.

A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Precision of a Brillouin-scattering-based distributed strain sensor,” Proc. SPIE 3670, 359 (1999).
[Crossref]

Chandrasekhar, S.

Chen, L.

X. Bao and L. Chen, “Recent Progress in Brillouin Scattering Based Fiber Sensors,” Sensors (Basels) 11(12), 4152–4187 (2011).
[Crossref]

Chen, Y.-K.

DeMerchant, M. D.

A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Precision of a Brillouin-scattering-based distributed strain sensor,” Proc. SPIE 3670, 359 (1999).
[Crossref]

Dominguez-Lopez, A.

Dong, Y.

Fang, J.

J. Fang, P. Xu, and W. Shieh, “Single-shot measurement of stimulated Brillouin spectrum by using OFDM probe and coherent detection,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), AT5C.3.
[Crossref]

J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing” in Proceedings of IEEE Sensors 2016 (IEEE, 2016), B4L-C, pp. 1–3.

Feng, Y.

Gonzalez-Herraez, M.

Guo, N.

Herráez, M. G.

Jiang, T.

Jin, C.

Kaneda, N.

Kwon, Y. H.

Lee, J.

Li, H.

Li, J.

Li, Z.

Liang, H.

Loayssa, A.

López-Fernandino, F.

Lopez-Gil, A.

Lu, C.

Lu, Z.

Martin-Lopez, S.

Masoudi, A.

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87, 011501 (2016).
[Crossref] [PubMed]

Motil, A.

Newson, T. P.

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87, 011501 (2016).
[Crossref] [PubMed]

Num, E. S.

Peled, Y.

Pfau, T.

Sagues, M.

Shieh, W.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[Crossref] [PubMed]

J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing” in Proceedings of IEEE Sensors 2016 (IEEE, 2016), B4L-C, pp. 1–3.

Q. Yang, A. A. Amin, and W. Shieh, “Optical OFDM Basics,” in Impact of Nonlinearities on Fiber Optic Communications, S. Kumar, ed. (SpringerNew York, New York, NY, 2011), pp. 43–85.
[Crossref]

J. Fang, P. Xu, and W. Shieh, “Single-shot measurement of stimulated Brillouin spectrum by using OFDM probe and coherent detection,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), AT5C.3.
[Crossref]

Song, K. Y.

Soto, M. A.

Tang, Y.

Thévenaz, L.

Tur, M.

Urricelqui, J.

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Voskoboinik, A.

Wang, B.

Wang, L.

Willner, A. W.

Xu, P.

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
[Crossref]

J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing” in Proceedings of IEEE Sensors 2016 (IEEE, 2016), B4L-C, pp. 1–3.

J. Fang, P. Xu, and W. Shieh, “Single-shot measurement of stimulated Brillouin spectrum by using OFDM probe and coherent detection,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), AT5C.3.
[Crossref]

Yang, Q.

Q. Yang, A. A. Amin, and W. Shieh, “Optical OFDM Basics,” in Impact of Nonlinearities on Fiber Optic Communications, S. Kumar, ed. (SpringerNew York, New York, NY, 2011), pp. 43–85.
[Crossref]

Yaron, L.

Yilmaz, O. F.

Youn, C. J.

Yu, C.

Zhang, H.

Zhou, D.

Front. Optoelectron. China (1)

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. China 3(1), 13–21 (2010).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (9)

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
[Crossref]

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006).
[Crossref]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
[Crossref]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

J. Urricelqui, M. Sagues, and A. Loayssa, “BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation,” Opt. Express 21(14), 17186–17194 (2013).
[Crossref] [PubMed]

C. Jin, N. Guo, Y. Feng, L. Wang, H. Liang, J. Li, Z. Li, C. Yu, and C. Lu, “Scanning-free BOTDA based on ultra-fine digital optical frequency comb,” Opt. Express 23(4), 5277–5284 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Proc. SPIE (1)

A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Precision of a Brillouin-scattering-based distributed strain sensor,” Proc. SPIE 3670, 359 (1999).
[Crossref]

Rev. Sci. Instrum. (1)

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87, 011501 (2016).
[Crossref] [PubMed]

Sensors (Basels) (1)

X. Bao and L. Chen, “Recent Progress in Brillouin Scattering Based Fiber Sensors,” Sensors (Basels) 11(12), 4152–4187 (2011).
[Crossref]

Other (3)

J. Fang, P. Xu, and W. Shieh, “Single-shot measurement of stimulated Brillouin spectrum by using OFDM probe and coherent detection,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), AT5C.3.
[Crossref]

Q. Yang, A. A. Amin, and W. Shieh, “Optical OFDM Basics,” in Impact of Nonlinearities on Fiber Optic Communications, S. Kumar, ed. (SpringerNew York, New York, NY, 2011), pp. 43–85.
[Crossref]

J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing” in Proceedings of IEEE Sensors 2016 (IEEE, 2016), B4L-C, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of single-shot BOTDA. (a) Subcarriers of OFDM signal in frequency domain. (b) Dual-polarized double-sideband OFDM probe. LSB: lower sideband, USB: upper sideband. (c) Pump and probe interaction and Brillouin spectrum extraction. FFT: fast Fourier transform, DSP: digital signal processing. (d) The Brillouin gain spectrum (BGS) and the Brillouin loss spectrum (BLS) after the stimulated Brillouin scattering process.
Fig. 2
Fig. 2 Experimental setup of single-shot BOTDA. ECL: external cavity laser, BS: beam splitter, AWG: arbitrary waveform generator, MSS: microwave synthesized sweeper, EOM: electro-optic modulator, EDFA: Erbium-doped fiber amplifier, DWDM: dense wavelength division multiplexer, PC: polarization controller, PBS: polarization beam splitter, BPD: balanced photo-detector, DSO: digital storage oscilloscope.
Fig. 3
Fig. 3 (a) Generation of the complex baseband OFDM signal. (b) The real part (I) and imaginary part (Q) of one generated OFDM frame in time domain. (c) The electric spectrum of the baseband OFDM probe. (d) The optical spectrum of the double-sideband OFDM probe with orthogonal sideband polarizations.
Fig. 4
Fig. 4 (a) Procedure of data processing. (b) Received time-domain signal. (c) The phase drift between the probe and LO in the SBS region. (d) Channel distortion of the OFDM subcarriers.
Fig. 5
Fig. 5 (a) Logarithmic gain of BGS vector Γ+(z) and BLS vector Γ(z) of a OFDM frame in the SBS region. (b) Logarithmic gain profile of ΔΓ(z). Inset is the data points which used for curve fitting and BFS estimation.
Fig. 6
Fig. 6 Reconstructed Brillouin spectrogram for (a) x-polarization (b) y-polarization and (c) combined dual-polarization. (d). Measured data and Lorentzian fitting curves of markers A, B and C in (c).
Fig. 7
Fig. 7 (a) Estimated BFS along the fiber with different water bath temperature. The inset figure shows the increment of BFS of the heated fiber segment. (b) BFS of the hotspot as a function of temperature. Blue line is the linear curve fitting.
Fig. 8
Fig. 8 (a) BFS of 25 times of measurements along the fiber when the water bath is set to 65°C. Blue line is the mean value for each segment. Dots are BFS data points. Red lines are the error bars. (b) Normalized probability density distribution of BFS deviation. Blue line denotes the Gaussian curve fitting of the probability density function (PDF).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = i = + k = 1 N c k i s k ( t i T s )
s k ( t ) = ( t ) e j 2 π v k t
( t ) = { 1 , ( 0 < t < T s ) 0 , ( t 0 , t > T s )
s ( t ) = k = 1 N c k e j 2 π v k t
E t ( t ) = A 0 k = 1 N c k e j 2 π ( v k + v 0 ) t
E ^ t ( v ) = A 0 k = 1 N c k δ [ 2 π ( v v k v 0 ) ]
E ^ DSB = a 0 A 0 k = 1 N c k δ [ 2 π ( v v k v 0 + v RF ) ] E ^ s + + a 0 A 0 k = 1 N c k δ [ 2 π ( v v k v 0 v RF ) ] E ^ s
E r + + h + ( t , z ) E s +
E r = h ( t , z ) E s
E ^ r + = H + ( v , z ) E ^ s +
E ^ r = H ( v , z ) E ^ s
H ± ( v , z ) = exp [ ± η ± g 0 Δ v B Δ v B + 2 j ( v v p ± v B ( z ) ) ]
η ± = 1 2 ( 1 + s 1 p s 1 s ± + s 2 p s 2 s ± s 3 p s 3 s ± )
R + = 1 2 γ E + E LO *
R = 1 2 γ E E LO *
Γ ± ( v , z ) = ± 2 η ± g 0 Δ v B 2 Δ v B 2 + 4 ( v ± v B ( z ) ) 2
G ( v , z ) = 2 g 0 Δ v B 2 Δ v B 2 + 4 ( v v RF + v B ( z ) ) 2
c k = exp ( j π k 2 / N ) , k = 1 , 2 , , N
PAPR = max [ | s ( t ) | 2 ] / E [ | s ( t ) | 2 ]

Metrics