Abstract

A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Khalil, “Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium,” Diabetes Technol. Ther. 6(5), 660–697 (2004).
    [Crossref] [PubMed]
  2. K. Song, U. Ha, S. W. Park, J. S. Bae, and H. J. Yoo, “An impedance and multi-wavelength near infrared spectroscopy IC for noninvasive blood glucose estimation,” IEEE J. Solid St. Circ. 50(4), 1025–1037 (2015).
    [Crossref]
  3. D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9(1), 213–220 (2004).
    [Crossref] [PubMed]
  4. M. J. Scholtes-Timmerman, S. Bijlsma, M. J. Fokkert, R. Slingerland, and S. J. van Veen, “Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring,” J. Diabetes Sci. Technol. 8(5), 974–979 (2014).
    [Crossref] [PubMed]
  5. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bã Cker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22(3), 190–192 (1997).
    [Crossref] [PubMed]
  6. K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
    [Crossref]
  7. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19(24), 2062–2064 (1994).
    [Crossref] [PubMed]
  8. M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
    [Crossref] [PubMed]
  9. Q. H. Phan and Y. L. Lo, “Stokes-Mueller matrix polarimetry for glucose sensing,” Opt. Lasers Eng. 92, 120–128 (2017).
    [Crossref]
  10. C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
    [Crossref] [PubMed]
  11. T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
    [Crossref] [PubMed]
  12. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
    [Crossref] [PubMed]
  13. R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
    [Crossref] [PubMed]
  14. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003).
    [Crossref] [PubMed]
  15. B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
    [Crossref] [PubMed]
  16. R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
    [Crossref] [PubMed]
  17. M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
    [Crossref]
  18. A. Caduff, E. Hirt, Y. Feldman, Z. Ali, and L. Heinemann, “First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosens. Bioelectron. 19(3), 209–217 (2003).
    [Crossref] [PubMed]

2017 (1)

Q. H. Phan and Y. L. Lo, “Stokes-Mueller matrix polarimetry for glucose sensing,” Opt. Lasers Eng. 92, 120–128 (2017).
[Crossref]

2015 (2)

K. Song, U. Ha, S. W. Park, J. S. Bae, and H. J. Yoo, “An impedance and multi-wavelength near infrared spectroscopy IC for noninvasive blood glucose estimation,” IEEE J. Solid St. Circ. 50(4), 1025–1037 (2015).
[Crossref]

M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
[Crossref]

2014 (1)

M. J. Scholtes-Timmerman, S. Bijlsma, M. J. Fokkert, R. Slingerland, and S. J. van Veen, “Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring,” J. Diabetes Sci. Technol. 8(5), 974–979 (2014).
[Crossref] [PubMed]

2013 (2)

C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
[Crossref] [PubMed]

R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
[Crossref] [PubMed]

2012 (1)

T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
[Crossref] [PubMed]

2010 (1)

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref] [PubMed]

2004 (3)

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref] [PubMed]

D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9(1), 213–220 (2004).
[Crossref] [PubMed]

O. S. Khalil, “Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium,” Diabetes Technol. Ther. 6(5), 660–697 (2004).
[Crossref] [PubMed]

2003 (2)

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003).
[Crossref] [PubMed]

A. Caduff, E. Hirt, Y. Feldman, Z. Ali, and L. Heinemann, “First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosens. Bioelectron. 19(3), 209–217 (2003).
[Crossref] [PubMed]

2001 (2)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
[Crossref]

1997 (1)

1995 (1)

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
[Crossref] [PubMed]

1994 (1)

Ali, Z.

A. Caduff, E. Hirt, Y. Feldman, Z. Ali, and L. Heinemann, “First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosens. Bioelectron. 19(3), 209–217 (2003).
[Crossref] [PubMed]

Ankri, R.

R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
[Crossref] [PubMed]

Ansari, R. R.

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref] [PubMed]

Bã Cker, D.

Bae, J. S.

K. Song, U. Ha, S. W. Park, J. S. Bae, and H. J. Yoo, “An impedance and multi-wavelength near infrared spectroscopy IC for noninvasive blood glucose estimation,” IEEE J. Solid St. Circ. 50(4), 1025–1037 (2015).
[Crossref]

Berger, M.

Bijlsma, S.

M. J. Scholtes-Timmerman, S. Bijlsma, M. J. Fokkert, R. Slingerland, and S. J. van Veen, “Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring,” J. Diabetes Sci. Technol. 8(5), 974–979 (2014).
[Crossref] [PubMed]

Böckle, S.

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref] [PubMed]

Bruulsema, J. T.

Caduff, A.

A. Caduff, E. Hirt, Y. Feldman, Z. Ali, and L. Heinemann, “First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosens. Bioelectron. 19(3), 209–217 (2003).
[Crossref] [PubMed]

Cope, M.

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
[Crossref] [PubMed]

Coté, G. L.

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref] [PubMed]

Côté, D.

D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9(1), 213–220 (2004).
[Crossref] [PubMed]

Del Bianco, S.

Esenaliev, R.

K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
[Crossref]

Essenpreis, M.

Fantini, S.

Farrell, T. J.

Feldman, Y.

A. Caduff, E. Hirt, Y. Feldman, Z. Ali, and L. Heinemann, “First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosens. Bioelectron. 19(3), 209–217 (2003).
[Crossref] [PubMed]

Fixler, D.

R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
[Crossref] [PubMed]

Fokkert, M. J.

M. J. Scholtes-Timmerman, S. Bijlsma, M. J. Fokkert, R. Slingerland, and S. J. van Veen, “Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring,” J. Diabetes Sci. Technol. 8(5), 974–979 (2014).
[Crossref] [PubMed]

Franceschini, M. A.

Gelikonov, V.

K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
[Crossref]

Gratton, E.

Ha, U.

K. Song, U. Ha, S. W. Park, J. S. Bae, and H. J. Yoo, “An impedance and multi-wavelength near infrared spectroscopy IC for noninvasive blood glucose estimation,” IEEE J. Solid St. Circ. 50(4), 1025–1037 (2015).
[Crossref]

Harada, T.

M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
[Crossref]

Hayward, J. E.

Heinemann, L.

Hirt, E.

A. Caduff, E. Hirt, Y. Feldman, Z. Ali, and L. Heinemann, “First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosens. Bioelectron. 19(3), 209–217 (2003).
[Crossref] [PubMed]

Honma, M.

M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
[Crossref]

Khalil, O. S.

O. S. Khalil, “Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium,” Diabetes Technol. Ther. 6(5), 660–697 (2004).
[Crossref] [PubMed]

Kohl, M.

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
[Crossref] [PubMed]

Koschinsky, T.

Kuranov, R.

K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
[Crossref]

Larin, K.

K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
[Crossref]

Larina, I.

K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
[Crossref]

Lau, S. I.

R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
[Crossref] [PubMed]

Liao, C. C.

Lo, Y. L.

Q. H. Phan and Y. L. Lo, “Stokes-Mueller matrix polarimetry for glucose sensing,” Opt. Lasers Eng. 92, 120–128 (2017).
[Crossref]

C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
[Crossref] [PubMed]

T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
[Crossref] [PubMed]

Maier, J. S.

Malik, B. H.

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref] [PubMed]

Martelli, F.

Meiri, A.

R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
[Crossref] [PubMed]

Motamedi, M.

K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
[Crossref]

Motiei, M.

R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
[Crossref] [PubMed]

Muto, S.

M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
[Crossref]

Nose, T.

M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
[Crossref]

Orskov, H.

Park, S. W.

K. Song, U. Ha, S. W. Park, J. S. Bae, and H. J. Yoo, “An impedance and multi-wavelength near infrared spectroscopy IC for noninvasive blood glucose estimation,” IEEE J. Solid St. Circ. 50(4), 1025–1037 (2015).
[Crossref]

Patterson, M. S.

Pham, T. T. H.

T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
[Crossref] [PubMed]

Phan, Q. H.

Q. H. Phan and Y. L. Lo, “Stokes-Mueller matrix polarimetry for glucose sensing,” Opt. Lasers Eng. 92, 120–128 (2017).
[Crossref]

Popovtzer, R.

R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
[Crossref] [PubMed]

Rovati, L.

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref] [PubMed]

Saito, H.

M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
[Crossref]

Sandahl-Christiansen, J.

Schmelzeisen-Redeker, G.

Scholtes-Timmerman, M. J.

M. J. Scholtes-Timmerman, S. Bijlsma, M. J. Fokkert, R. Slingerland, and S. J. van Veen, “Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring,” J. Diabetes Sci. Technol. 8(5), 974–979 (2014).
[Crossref] [PubMed]

Slingerland, R.

M. J. Scholtes-Timmerman, S. Bijlsma, M. J. Fokkert, R. Slingerland, and S. J. van Veen, “Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring,” J. Diabetes Sci. Technol. 8(5), 974–979 (2014).
[Crossref] [PubMed]

Song, K.

K. Song, U. Ha, S. W. Park, J. S. Bae, and H. J. Yoo, “An impedance and multi-wavelength near infrared spectroscopy IC for noninvasive blood glucose estimation,” IEEE J. Solid St. Circ. 50(4), 1025–1037 (2015).
[Crossref]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

Uchida, E.

M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
[Crossref]

van Veen, S. J.

M. J. Scholtes-Timmerman, S. Bijlsma, M. J. Fokkert, R. Slingerland, and S. J. van Veen, “Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring,” J. Diabetes Sci. Technol. 8(5), 974–979 (2014).
[Crossref] [PubMed]

Vitkin, I. A.

D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9(1), 213–220 (2004).
[Crossref] [PubMed]

Walker, S. A.

Yoo, H. J.

K. Song, U. Ha, S. W. Park, J. S. Bae, and H. J. Yoo, “An impedance and multi-wavelength near infrared spectroscopy IC for noninvasive blood glucose estimation,” IEEE J. Solid St. Circ. 50(4), 1025–1037 (2015).
[Crossref]

Zaccanti, G.

Appl. Opt. (1)

Biosens. Bioelectron. (1)

A. Caduff, E. Hirt, Y. Feldman, Z. Ali, and L. Heinemann, “First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosens. Bioelectron. 19(3), 209–217 (2003).
[Crossref] [PubMed]

Diabetes Technol. Ther. (1)

O. S. Khalil, “Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium,” Diabetes Technol. Ther. 6(5), 660–697 (2004).
[Crossref] [PubMed]

IEEE J. Solid St. Circ. (1)

K. Song, U. Ha, S. W. Park, J. S. Bae, and H. J. Yoo, “An impedance and multi-wavelength near infrared spectroscopy IC for noninvasive blood glucose estimation,” IEEE J. Solid St. Circ. 50(4), 1025–1037 (2015).
[Crossref]

J. Biomed. Opt. (5)

D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9(1), 213–220 (2004).
[Crossref] [PubMed]

T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
[Crossref] [PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref] [PubMed]

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref] [PubMed]

J. Biophotonics (1)

R. Ankri, A. Meiri, S. I. Lau, M. Motiei, R. Popovtzer, and D. Fixler, “Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection,” J. Biophotonics 6(2), 188–196 (2013).
[Crossref] [PubMed]

J. Diabetes Sci. Technol. (1)

M. J. Scholtes-Timmerman, S. Bijlsma, M. J. Fokkert, R. Slingerland, and S. J. van Veen, “Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring,” J. Diabetes Sci. Technol. 8(5), 974–979 (2014).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. Opt. (1)

M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose using liquid-crystal grating,” Jpn. J. Appl. Phys. Opt. 54(12), 122601 (2015).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

Q. H. Phan and Y. L. Lo, “Stokes-Mueller matrix polarimetry for glucose sensing,” Opt. Lasers Eng. 92, 120–128 (2017).
[Crossref]

Opt. Lett. (2)

Phys. Med. Biol. (1)

M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40(7), 1267–1287 (1995).
[Crossref] [PubMed]

Proc. SPIE (1)

K. Larin, I. Larina, M. Motamedi, V. Gelikonov, R. Kuranov, and R. Esenaliev, “Potential application of optical coherence tomography for noninvasive monitoring of glucose concentration,” Proc. SPIE 4263, 83–90 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic illustration of experimental setup.

Fig. 2
Fig. 2

Experimental results for extracted values of: (a) γ with standard deviation of ± 8.4 × 10−3° over four repeated tests; and (b) Δ with standard deviation of ± 8.0 × 10−2 over four repeated tests for aqueous phantom samples with glucose concentrations ranging from 0 ~500 mg/dL and 2% lipofundin.

Fig. 3
Fig. 3

Experimental results for extracted values of: (a) γ-optical rotation angle and (b) Δ-depolarization index of extracellular tissue on human fingertip of three healthy volunteers at four different times of the day.

Tables (3)

Tables Icon

Table 1 Optical rotation angle γ of extracellular tissue on human fingertip of four healthy volunteers

Tables Icon

Table 2 Depolarization index Δ of extracellular tissue on human fingertip of four healthy volunteers

Tables Icon

Table 3 Standard deviations of four measured values of γ and Δ

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

[ S 1 S 2 S 3 S 4 ]=[ M 11 M 12 M 13 M 14 M 21 M 22 M 23 M 24 M 31 M 32 M 33 M 34 M 41 M 42 M 43 M 44 ][ S 0 S 1 S 2 S 3 ]
S 0° = [ M 11 + M 12 , M 21 + M 22 , M 31 + M 32 , M 41 + M 42 ] T ,
S 45° = [ M 11 + M 13 , M 21 + M 23 , M 31 + M 33 , M 41 + M 43 ] T ,
S 90° = [ M 11 M 12 , M 21 M 22 , M 31 M 32 , M 41 M 42 ] T ,
S R = [ M 11 + M 14 , M 21 + M 24 , M 31 + M 34 , M 41 + M 44 ] T .
m=v( ln(λ) z ) v 1 =[ m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 34 m 44 ],
M CB =[ 1 0 0 0 0 cos(2γ) sin(2γ) 0 0 sin(2γ) cos(2γ) 0 0 0 0 1 ],
m CB =[ 1 0 0 0 0 0 2γ 0 0 2γ 0 0 0 0 0 1 ].
m CB =[ 1 0 0 0 0 0 2γ+ η ' v 0 0 2γ+ η ' v 0 0 0 0 0 1 ],
γ= m 23 m 32 4 ,0γ180°.
m Δ =[ 0 m 12 m 21 2 m 13 m 31 2 m 14 m 41 2 m 21 m 12 2 e 1 m 23 + m 32 2 m 24 + m 42 2 m 31 m 13 2 m 23 + m 32 2 e 2 m 34 + m 43 2 m 41 m 14 2 m 24 + m 42 2 m 34 + m 43 2 e 3 ].
M Δ =[ 1 e 12 e 13 e 14 e 21 e 22 e 23 e 24 e 31 e 32 e 33 e 34 e 41 e 42 e 43 e 44 ],
Δ=1 e 22 2 + e 33 2 + e 44 2 3 ,0Δ1 .

Metrics