Abstract

A perceptually uniform color space has been long desired for a wide range of imaging applications. Such a color space should be able to represent a color pixel in three unique and independent attributes (lightness, chroma, and hue). Such a space would be perceptually uniform over a wide gamut, linear in iso-hue directions, and can predict both small and large color differences as well as lightness in high dynamic range environments. It would also have minimum computational cost for real time or quasi-real time processing. Presently available color spaces are not able to achieve these goals satisfactorily and comprehensively. In this study, a uniform color space is proposed and its performance in predicting a wide range of experimental data is presented in comparison with the other state of the art color spaces.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source

Francisco Martínez-Verdú, Esther Perales, Elisabet Chorro, Dolores de Fez, Valentín Viqueira, and Eduardo Gilabert
J. Opt. Soc. Am. A 24(6) 1501-1515 (2007)

Number of discernible object colors is a conundrum

Kenichiro Masaoka, Roy S. Berns, Mark D. Fairchild, and Farhad Moghareh Abed
J. Opt. Soc. Am. A 30(2) 264-277 (2013)

A color difference metric based on the chromaticity discrimination ellipses

Senfar Wen
Opt. Express 20(24) 26441-26447 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Nilsson, “Ultra high definition video formats and standardization,” (BT Media and Broadcast Research Paper, Version 1.0, 2015).
  2. S. Daly, T. Kunkel, X. Sun, S. Farrell, and P. Crum, “41.1: Distinguished paper: Viewer preferences for shadow, diffuse, specular, and emissive luminance limits of high dynamic range displays,” SID Symposium Digest of Technical Papers 44 (1), 563–566 (2013).
    [Crossref]
  3. M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5(3), 145–155 (1980).
    [Crossref]
  4. I. Lissner and P. Urban, “Toward a unified color space for perception-based image processing,” IEEE Trans. Image Process. 21(3), 1153–1168 (2012).
    [Crossref] [PubMed]
  5. M. Safdar, M. R. Luo, and X. Liu, “Performance Comparison of JPEG, JPEG 2000, and Newly Developed CSI-JPEG by Adopting Different Color Models,” Col. Res. Appl. 42(4), 460-473 (2017).
  6. G. M. Johnson and M. D. Fairchild, “A top down description of S-CIELAB and CIEDE2000,” Color Res. Appl. 28(6), 425–435 (2003).
    [Crossref]
  7. K. J. Leeming and P. Green, “Selecting significant colors from a complex image for image quality modeling,” Proc. SPIE 6059, 605907 (2006).
    [Crossref]
  8. J. Kuang, G. M. Johnson, and M. D. Fairchild, “iCAM06: A refined image appearance model for HDR image rendering,” J. Vis. Commun. Image R. 18(5), 406–414 (2007).
    [Crossref]
  9. Y. J. Kim and S. Park, “CIECAM02-UCS based evaluation of colorimetric characterization modeling for a liquid crystal display using a digital still camera,” Opt. Rev. 17(3), 152–158 (2010).
    [Crossref]
  10. A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
    [Crossref] [PubMed]
  11. Commission Internationale de l’Éclairage (CIE), International Lighting Vocabulary, http://eilv.cie.co.at/term/1369
  12. Commission Internationale de l’Éclairage (CIE), Colorimetry, CIE Publication No. 15 (CIE Central Bureau, Vienna, Austria, 2004).
  13. British Standards Institution (BSI), Method for calculation of small colour differences, BSI Tech. Rep. BS 6923 (BSI, 1988).
  14. Commission Internationale de l’Éclairage (CIE), Industrial colour-difference evaluation, CIE Publication No. 116 (CIE Central Bureau, Vienna, Austria, 1995).
  15. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(4), 340–350 (2001).
    [Crossref]
  16. P. C. Hung and R. S. Berns, “Determination of constant Hue Loci for a CRT gamut and their predictions using color appearance spaces,” Color Res. Appl. 20(5), 285–295 (1995).
    [Crossref]
  17. F. Ebner and M. D. Fairchild, “Finding constant hue surfaces in color space,” Proc. SPIE 3300, 107–117 (1998).
    [Crossref]
  18. F. Ebner and M. D. Fairchild, “Development and testing of a color space (IPT) with improved hue uniformity,” in Proceedings of the 6th Color and Imaging Conference, (Society for Imaging Science and Technology, 1998), pp. 8–13.
  19. M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
    [Crossref]
  20. C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.
  21. M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.
  22. M. D. Fairchild and D. R. Wyble, “hdr-CIELAB and hdr-IPT: Simple models for describing the color of high-dynamic-range and wide-color-gamut images,” in Proceedings of the 18th Color and Imaging Conference, (Society for Imaging Science and Technology, 2010), pp. 322–326.
  23. M. D. Fairchild and P. H. Chen, “Brightness, lightness, and specifying color in high-dynamic-range scenes and images,” Proc. SPIE 7867, 78670O (2011).
    [Crossref]
  24. Society of Motion Picture & Television Engineers, “High dynamic range electro-optical transfer function of mastering reference displays,” Society of Motion Picture & Television Engineers (SMPTE), ST 2084, 1–14 (2014).
  25. P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004).
    [Crossref]
  26. J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.
  27. Dolby, What is ICTCP-Introduction? White paper, version 7.1 (Dolby, United States, 2016).
  28. P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
    [Crossref] [PubMed]
  29. R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16(5), 297–316 (1991).
    [Crossref]
  30. K. Witt, “Geometric relations between scales of small colour differences,” Color Res. Appl. 24(2), 78–92 (1999).
    [Crossref]
  31. D. H. Kim and J. H. Nobbs, “New weighting functions for the weighted CIELAB colour difference formula,” in Proceedings of the AIC Colour, (AIC, 1997), pp. 446–449.
  32. M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11(1), 25–42 (1986).
    [Crossref]
  33. D. L. MacAdam, “Uniform color scales,” J. Opt. Soc. Am. 64(12), 1691–1702 (1974).
    [Crossref] [PubMed]
  34. RIT Munsell Color Science Laboratory, Munsell renotation data, https://www.rit.edu/cos/colorscience/rc_munsell_renotation.php .
  35. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32(5), 247–274 (1942).
    [Crossref]
  36. K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: Loci of unique hues and hue uniformity,” Color Res. Appl. 36(5), 316–323 (2011).
    [Crossref]
  37. Commission Internationale de l’Éclairage (CIE), A colour appearance model for colour management systems: CIECAM02, CIE Publication No. 159 (CIE Central Bureau, Vienna, Austria, 2004).
  38. G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27(4), 282–290 (2002).
    [Crossref]
  39. G. Kuehni, “Towards an improved uniform color space,” Color Res. Appl. 24(4), 253–265 (1999).
    [Crossref]
  40. M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “MATLAB code for forward and reverse models of Jzazbz uniform color space,” figshare. [Retrieved: June 21, 2017] https://doi.org/10.6084/m9.figshare.5132461 .
  41. S. M. Newhall, D. Nickerson, and D. B. Judd, “Final report of the O.S.A. subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 33(7), 385–418 (1943).
    [Crossref]

2017 (1)

M. Safdar, M. R. Luo, and X. Liu, “Performance Comparison of JPEG, JPEG 2000, and Newly Developed CSI-JPEG by Adopting Different Color Models,” Col. Res. Appl. 42(4), 460-473 (2017).

2015 (1)

2012 (1)

I. Lissner and P. Urban, “Toward a unified color space for perception-based image processing,” IEEE Trans. Image Process. 21(3), 1153–1168 (2012).
[Crossref] [PubMed]

2011 (2)

M. D. Fairchild and P. H. Chen, “Brightness, lightness, and specifying color in high-dynamic-range scenes and images,” Proc. SPIE 7867, 78670O (2011).
[Crossref]

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: Loci of unique hues and hue uniformity,” Color Res. Appl. 36(5), 316–323 (2011).
[Crossref]

2010 (1)

Y. J. Kim and S. Park, “CIECAM02-UCS based evaluation of colorimetric characterization modeling for a liquid crystal display using a digital still camera,” Opt. Rev. 17(3), 152–158 (2010).
[Crossref]

2007 (2)

J. Kuang, G. M. Johnson, and M. D. Fairchild, “iCAM06: A refined image appearance model for HDR image rendering,” J. Vis. Commun. Image R. 18(5), 406–414 (2007).
[Crossref]

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
[Crossref] [PubMed]

2006 (2)

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

K. J. Leeming and P. Green, “Selecting significant colors from a complex image for image quality modeling,” Proc. SPIE 6059, 605907 (2006).
[Crossref]

2004 (1)

P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004).
[Crossref]

2003 (1)

G. M. Johnson and M. D. Fairchild, “A top down description of S-CIELAB and CIEDE2000,” Color Res. Appl. 28(6), 425–435 (2003).
[Crossref]

2002 (1)

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27(4), 282–290 (2002).
[Crossref]

2001 (1)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(4), 340–350 (2001).
[Crossref]

1999 (2)

K. Witt, “Geometric relations between scales of small colour differences,” Color Res. Appl. 24(2), 78–92 (1999).
[Crossref]

G. Kuehni, “Towards an improved uniform color space,” Color Res. Appl. 24(4), 253–265 (1999).
[Crossref]

1998 (1)

F. Ebner and M. D. Fairchild, “Finding constant hue surfaces in color space,” Proc. SPIE 3300, 107–117 (1998).
[Crossref]

1995 (1)

P. C. Hung and R. S. Berns, “Determination of constant Hue Loci for a CRT gamut and their predictions using color appearance spaces,” Color Res. Appl. 20(5), 285–295 (1995).
[Crossref]

1991 (1)

R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16(5), 297–316 (1991).
[Crossref]

1986 (1)

M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11(1), 25–42 (1986).
[Crossref]

1980 (1)

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

1974 (1)

1943 (1)

1942 (1)

Alman, D. H.

R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16(5), 297–316 (1991).
[Crossref]

Atkins, R.

J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.

Balonon-Rosen, M. R.

R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16(5), 297–316 (1991).
[Crossref]

Barten, P. G. J.

P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004).
[Crossref]

Berns, R. S.

P. C. Hung and R. S. Berns, “Determination of constant Hue Loci for a CRT gamut and their predictions using color appearance spaces,” Color Res. Appl. 20(5), 285–295 (1995).
[Crossref]

R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16(5), 297–316 (1991).
[Crossref]

Chen, P. H.

M. D. Fairchild and P. H. Chen, “Brightness, lightness, and specifying color in high-dynamic-range scenes and images,” Proc. SPIE 7867, 78670O (2011).
[Crossref]

Cui, G.

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
[Crossref] [PubMed]

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27(4), 282–290 (2002).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(4), 340–350 (2001).
[Crossref]

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.

Daly, S.

J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.

David, A.

Eberhardt, B.

J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.

Ebner, F.

F. Ebner and M. D. Fairchild, “Finding constant hue surfaces in color space,” Proc. SPIE 3300, 107–117 (1998).
[Crossref]

F. Ebner and M. D. Fairchild, “Development and testing of a color space (IPT) with improved hue uniformity,” in Proceedings of the 6th Color and Imaging Conference, (Society for Imaging Science and Technology, 1998), pp. 8–13.

Fairchild, M. D.

M. D. Fairchild and P. H. Chen, “Brightness, lightness, and specifying color in high-dynamic-range scenes and images,” Proc. SPIE 7867, 78670O (2011).
[Crossref]

J. Kuang, G. M. Johnson, and M. D. Fairchild, “iCAM06: A refined image appearance model for HDR image rendering,” J. Vis. Commun. Image R. 18(5), 406–414 (2007).
[Crossref]

G. M. Johnson and M. D. Fairchild, “A top down description of S-CIELAB and CIEDE2000,” Color Res. Appl. 28(6), 425–435 (2003).
[Crossref]

F. Ebner and M. D. Fairchild, “Finding constant hue surfaces in color space,” Proc. SPIE 3300, 107–117 (1998).
[Crossref]

F. Ebner and M. D. Fairchild, “Development and testing of a color space (IPT) with improved hue uniformity,” in Proceedings of the 6th Color and Imaging Conference, (Society for Imaging Science and Technology, 1998), pp. 8–13.

M. D. Fairchild and D. R. Wyble, “hdr-CIELAB and hdr-IPT: Simple models for describing the color of high-dynamic-range and wide-color-gamut images,” in Proceedings of the 18th Color and Imaging Conference, (Society for Imaging Science and Technology, 2010), pp. 322–326.

Fini, P. T.

Froehlich, J.

J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.

Fu, C.

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: Loci of unique hues and hue uniformity,” Color Res. Appl. 36(5), 316–323 (2011).
[Crossref]

García, P. A.

Green, P.

K. J. Leeming and P. Green, “Selecting significant colors from a complex image for image quality modeling,” Proc. SPIE 6059, 605907 (2006).
[Crossref]

Houser, K. W.

Huertas, R.

Hung, P. C.

P. C. Hung and R. S. Berns, “Determination of constant Hue Loci for a CRT gamut and their predictions using color appearance spaces,” Color Res. Appl. 20(5), 285–295 (1995).
[Crossref]

Johnson, G. M.

J. Kuang, G. M. Johnson, and M. D. Fairchild, “iCAM06: A refined image appearance model for HDR image rendering,” J. Vis. Commun. Image R. 18(5), 406–414 (2007).
[Crossref]

G. M. Johnson and M. D. Fairchild, “A top down description of S-CIELAB and CIEDE2000,” Color Res. Appl. 28(6), 425–435 (2003).
[Crossref]

Judd, D. B.

Karatzas, D.

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: Loci of unique hues and hue uniformity,” Color Res. Appl. 36(5), 316–323 (2011).
[Crossref]

Kim, D. H.

D. H. Kim and J. H. Nobbs, “New weighting functions for the weighted CIELAB colour difference formula,” in Proceedings of the AIC Colour, (AIC, 1997), pp. 446–449.

Kim, Y. J.

Y. J. Kim and S. Park, “CIECAM02-UCS based evaluation of colorimetric characterization modeling for a liquid crystal display using a digital still camera,” Opt. Rev. 17(3), 152–158 (2010).
[Crossref]

Kuang, J.

J. Kuang, G. M. Johnson, and M. D. Fairchild, “iCAM06: A refined image appearance model for HDR image rendering,” J. Vis. Commun. Image R. 18(5), 406–414 (2007).
[Crossref]

Kuehni, G.

G. Kuehni, “Towards an improved uniform color space,” Color Res. Appl. 24(4), 253–265 (1999).
[Crossref]

Kunkel, T.

J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.

Leeming, K. J.

K. J. Leeming and P. Green, “Selecting significant colors from a complex image for image quality modeling,” Proc. SPIE 6059, 605907 (2006).
[Crossref]

Li, C.

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Li, C. J.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

Li, Z.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

Lissner, I.

I. Lissner and P. Urban, “Toward a unified color space for perception-based image processing,” IEEE Trans. Image Process. 21(3), 1153–1168 (2012).
[Crossref] [PubMed]

Liu, X.

M. Safdar, M. R. Luo, and X. Liu, “Performance Comparison of JPEG, JPEG 2000, and Newly Developed CSI-JPEG by Adopting Different Color Models,” Col. Res. Appl. 42(4), 460-473 (2017).

Luo, M. R.

M. Safdar, M. R. Luo, and X. Liu, “Performance Comparison of JPEG, JPEG 2000, and Newly Developed CSI-JPEG by Adopting Different Color Models,” Col. Res. Appl. 42(4), 460-473 (2017).

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27(4), 282–290 (2002).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(4), 340–350 (2001).
[Crossref]

M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11(1), 25–42 (1986).
[Crossref]

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.

MacAdam, D. L.

Melgosa, M.

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
[Crossref] [PubMed]

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

Newhall, S. M.

Nickerson, D.

Nobbs, J. H.

D. H. Kim and J. H. Nobbs, “New weighting functions for the weighted CIELAB colour difference formula,” in Proceedings of the AIC Colour, (AIC, 1997), pp. 446–449.

Ohno, Y.

Park, S.

Y. J. Kim and S. Park, “CIECAM02-UCS based evaluation of colorimetric characterization modeling for a liquid crystal display using a digital still camera,” Opt. Rev. 17(3), 152–158 (2010).
[Crossref]

Pointer, M. R.

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

Pytlarz, J.

J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.

Reniff, L.

R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16(5), 297–316 (1991).
[Crossref]

Rigg, B.

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27(4), 282–290 (2002).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(4), 340–350 (2001).
[Crossref]

M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11(1), 25–42 (1986).
[Crossref]

Roesler, G.

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27(4), 282–290 (2002).
[Crossref]

Royer, M. P.

Safdar, M.

M. Safdar, M. R. Luo, and X. Liu, “Performance Comparison of JPEG, JPEG 2000, and Newly Developed CSI-JPEG by Adopting Different Color Models,” Col. Res. Appl. 42(4), 460-473 (2017).

M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.

Schilling, A.

J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.

Smet, K. A. G.

Snyder, G. D.

R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16(5), 297–316 (1991).
[Crossref]

Urban, P.

I. Lissner and P. Urban, “Toward a unified color space for perception-based image processing,” IEEE Trans. Image Process. 21(3), 1153–1168 (2012).
[Crossref] [PubMed]

Wang, Z.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

Wei, M.

Whitehead, L.

Witt, K.

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27(4), 282–290 (2002).
[Crossref]

K. Witt, “Geometric relations between scales of small colour differences,” Color Res. Appl. 24(2), 78–92 (1999).
[Crossref]

Wuerger, S.

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: Loci of unique hues and hue uniformity,” Color Res. Appl. 36(5), 316–323 (2011).
[Crossref]

Wyble, D. R.

M. D. Fairchild and D. R. Wyble, “hdr-CIELAB and hdr-IPT: Simple models for describing the color of high-dynamic-range and wide-color-gamut images,” in Proceedings of the 18th Color and Imaging Conference, (Society for Imaging Science and Technology, 2010), pp. 322–326.

Xiao, K.

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: Loci of unique hues and hue uniformity,” Color Res. Appl. 36(5), 316–323 (2011).
[Crossref]

Xu, Y.

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

Col. Res. Appl. (1)

M. Safdar, M. R. Luo, and X. Liu, “Performance Comparison of JPEG, JPEG 2000, and Newly Developed CSI-JPEG by Adopting Different Color Models,” Col. Res. Appl. 42(4), 460-473 (2017).

Color Res. Appl. (11)

G. M. Johnson and M. D. Fairchild, “A top down description of S-CIELAB and CIEDE2000,” Color Res. Appl. 28(6), 425–435 (2003).
[Crossref]

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26(4), 340–350 (2001).
[Crossref]

P. C. Hung and R. S. Berns, “Determination of constant Hue Loci for a CRT gamut and their predictions using color appearance spaces,” Color Res. Appl. 20(5), 285–295 (1995).
[Crossref]

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M. R. Balonon-Rosen, “Visual determination of suprathreshold color-difference tolerances using probit analysis,” Color Res. Appl. 16(5), 297–316 (1991).
[Crossref]

K. Witt, “Geometric relations between scales of small colour differences,” Color Res. Appl. 24(2), 78–92 (1999).
[Crossref]

M. R. Luo and B. Rigg, “Chromaticity-discrimination ellipses for surface colours,” Color Res. Appl. 11(1), 25–42 (1986).
[Crossref]

K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: Loci of unique hues and hue uniformity,” Color Res. Appl. 36(5), 316–323 (2011).
[Crossref]

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27(4), 282–290 (2002).
[Crossref]

G. Kuehni, “Towards an improved uniform color space,” Color Res. Appl. 24(4), 253–265 (1999).
[Crossref]

IEEE Trans. Image Process. (1)

I. Lissner and P. Urban, “Toward a unified color space for perception-based image processing,” IEEE Trans. Image Process. 21(3), 1153–1168 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Vis. Commun. Image R. (1)

J. Kuang, G. M. Johnson, and M. D. Fairchild, “iCAM06: A refined image appearance model for HDR image rendering,” J. Vis. Commun. Image R. 18(5), 406–414 (2007).
[Crossref]

Opt. Express (1)

Opt. Rev. (1)

Y. J. Kim and S. Park, “CIECAM02-UCS based evaluation of colorimetric characterization modeling for a liquid crystal display using a digital still camera,” Opt. Rev. 17(3), 152–158 (2010).
[Crossref]

Proc. SPIE (4)

K. J. Leeming and P. Green, “Selecting significant colors from a complex image for image quality modeling,” Proc. SPIE 6059, 605907 (2006).
[Crossref]

F. Ebner and M. D. Fairchild, “Finding constant hue surfaces in color space,” Proc. SPIE 3300, 107–117 (1998).
[Crossref]

M. D. Fairchild and P. H. Chen, “Brightness, lightness, and specifying color in high-dynamic-range scenes and images,” Proc. SPIE 7867, 78670O (2011).
[Crossref]

P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004).
[Crossref]

Other (17)

J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and B. Eberhardt, “Encoding Color Difference Signals for High Dynamic Range and Wide Gamut Imagery,” in Proceedings of the 23rd Color and Imaging Conference, (Society for Imaging Science and Technology, 2015), pp. 240–247.

Dolby, What is ICTCP-Introduction? White paper, version 7.1 (Dolby, United States, 2016).

Society of Motion Picture & Television Engineers, “High dynamic range electro-optical transfer function of mastering reference displays,” Society of Motion Picture & Television Engineers (SMPTE), ST 2084, 1–14 (2014).

C. J. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, and M. R. Pointer, “A revision of CIECAM02 and its CAT and UCS,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 208–212.

M. Safdar, M. R. Luo, and G. Cui, “Investigating performance of uniform color spaces for high dynamic range and wide gamut color difference applications,” in Proceedings of the 24th Color and Imaging Conference, (Society for Imaging Science and Technology, 2016), pp. 88–93.

M. D. Fairchild and D. R. Wyble, “hdr-CIELAB and hdr-IPT: Simple models for describing the color of high-dynamic-range and wide-color-gamut images,” in Proceedings of the 18th Color and Imaging Conference, (Society for Imaging Science and Technology, 2010), pp. 322–326.

Commission Internationale de l’Éclairage (CIE), A colour appearance model for colour management systems: CIECAM02, CIE Publication No. 159 (CIE Central Bureau, Vienna, Austria, 2004).

RIT Munsell Color Science Laboratory, Munsell renotation data, https://www.rit.edu/cos/colorscience/rc_munsell_renotation.php .

D. H. Kim and J. H. Nobbs, “New weighting functions for the weighted CIELAB colour difference formula,” in Proceedings of the AIC Colour, (AIC, 1997), pp. 446–449.

F. Ebner and M. D. Fairchild, “Development and testing of a color space (IPT) with improved hue uniformity,” in Proceedings of the 6th Color and Imaging Conference, (Society for Imaging Science and Technology, 1998), pp. 8–13.

Commission Internationale de l’Éclairage (CIE), International Lighting Vocabulary, http://eilv.cie.co.at/term/1369

Commission Internationale de l’Éclairage (CIE), Colorimetry, CIE Publication No. 15 (CIE Central Bureau, Vienna, Austria, 2004).

British Standards Institution (BSI), Method for calculation of small colour differences, BSI Tech. Rep. BS 6923 (BSI, 1988).

Commission Internationale de l’Éclairage (CIE), Industrial colour-difference evaluation, CIE Publication No. 116 (CIE Central Bureau, Vienna, Austria, 1995).

M. Nilsson, “Ultra high definition video formats and standardization,” (BT Media and Broadcast Research Paper, Version 1.0, 2015).

S. Daly, T. Kunkel, X. Sun, S. Farrell, and P. Crum, “41.1: Distinguished paper: Viewer preferences for shadow, diffuse, specular, and emissive luminance limits of high dynamic range displays,” SID Symposium Digest of Technical Papers 44 (1), 563–566 (2013).
[Crossref]

M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “MATLAB code for forward and reverse models of Jzazbz uniform color space,” figshare. [Retrieved: June 21, 2017] https://doi.org/10.6084/m9.figshare.5132461 .

Supplementary Material (1)

NameDescription
» Code 1       MATLAB code for forward and reverse models of JzAzBz uniform color space

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Plots of the Hung & Berns constant hue data; (a) hue linearity using the structure similar to the Dolby model but re-optimizing the coeffients of matrices in Eq. (2) and Eq. (4), and the power factor in Eq. (3) [21], (b) hue linearity after extending the model using Eq. (5) and re-optimizing with b=1.16 , and (c) hue linearity after extending the model using Eq. (6) and re-optimizing with b=1.15 and g=0.66 . The solid black lines are drawn based on linear orthogonal fitting whereas the dashed black lines in the blue direction are drawn hypothetically to show the desired linearity.

Fig. 2
Fig. 2

The COMBVD ellipses data plotted in six different color spaces; (a) CIELAB, (b) CIELUV, (c) CAM16-UCS, (d) IPT, (e) ICTCP,, and (f) the proposed Jzazbz.

Fig. 3
Fig. 3

The MacAdam ellipses (10 times amplified) plotted in: (a) ICTCP, and (b) the proposed Jzazbz. The colored background represents the Rec.2020 gamut hull with a peak luminance of 1000 cd / m 2 and a white point corresponding to CIE standard illuminant D65.

Fig. 4
Fig. 4

Plots of lightness predictors; (a) Prediction of SL1 data by different lightness predictors, (b) Prediction of SL2 data by different lightness predictors, (c) Different lightness predictors plotted against CIE L * , and (d) Prediction of Munsell Value by different lightness predictors. All the lightness predictors are scaled to the range of CIE L * .

Fig. 5
Fig. 5

The Hung & Berns data plotted in six different color spaces; (a) CIELAB, (b) CIELUV, (c) CAM16-UCS, (d) IPT, (e) ICTCP, and (f) proposed Jzazbz. The solid black lines are drawn based on linear orthogonal fitting whereas dashed black lines in the blue direction are drawn hypothetically to show the ideal case. The data points are color coded using corresponding sRGB primaries.

Fig. 6
Fig. 6

Prediction results of Munsell data [34] for fixed Value ( V=5 ) and varying Chroma and Hue; (a) CIELAB, (b) CIELUV, (c) CAM16-UCS, (d) IPT, (e) ICTCP, and (f) the proposed Jzazbz. The data points are color coded using correspinding sRGB perimaries.

Fig. 7
Fig. 7

The Ebner & Fairchild [17] data plotted in six different color spaces; (a) CIELAB, (b) 40CIELUV, (c) CAM16-UCS, (d) IPT, (e) ICTCP, and (f) the proposed Jzazbz. The solid black lines are drawn based on linear orthogonal fitting. The data points are color coded using corresponding chromaticity and constant lightness ( L * =60 ).

Fig. 8
Fig. 8

The Xiao et al. [36], data plotted in six different color spaces; (a) CIELAB, (b) CIELUV, (c) CAM16-UCS, (d) IPT, (e) ICTCP, and (f) the proposed Jzazbz. The red, green, and blue color codes represent corresponding unique hue while black represents unique yellow. The solid lines are drawn based on linear orthogonal fitting. The symbole × represents corresponding white point.

Fig. 9
Fig. 9

(a) The CIE 1931 chromaticity scale plotted in the Jzazbz. The Rec.2020 gamut hull ( Y=10,000 cd / m 2 ) is plotted in Jzazbz with a z b z , a z J z , and b z J z planes shown in (b), (c), and (d), respectively. The white point corresponds to CIE standard illuminant D65.

Tables (3)

Tables Icon

Table 1 Details of different experimental data sets and corresponding appearance model parameters.

Tables Icon

Table 2 Results for test color spaces to predict different experimental data sets presented in STRESS units.

Tables Icon

Table 3 Test performance of color spaces for grey convergence and hue linearity based on three different data sets. Values of standard deviation (SD) have units of degree and that of chroma-ratio are in percentage.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Chromaratio=100 3 C w C r + C g + C b
[ L M S ]=[ α 1,1 α 1,2 1 α 1,1 α 1,2 α 2,1 α 2,2 1 α 2,1 α 2,2 α 3,1 α 3,2 1 α 3,1 α 3,2 ][ X D65 Y D65 Z D65 ]
{ L ' , M ' , S ' }= ( c 1 + c 2 ( { L,M,S } 10000 ) n 1+ c 3 ( { L,M,S } 10000 ) n ) p
[ I z a z b z ]=[ ω 1,1 ω 1,2 1 ω 1,1 ω 1,2 ω 2,1 ω 2,2 ω 2,1 ω 2,2 ω 3,1 ω 3,2 ω 3,1 ω 3,2 ][ L ' M ' S ' ]
X D65 ' =b X D65 (b1) Z D65
[ X D65 ' Y D65 ' ]=[ b X D65 g Y D65 ][ (b1) Z D65 (g1) X D65 ]
J z = (1+d) I z 1+d I z
[ X D65 ' Y D65 ' ]=[ b X D65 g Y D65 ][ (b1) Z D65 (g1) X D65 ]
[ L M S ]=[ 0.41478972 0.579999 0.0146480 -0.2015100 1.120649 0.0531008 -0.0166008 0.264800 0.6684799 ][ X D65 ' Y D65 ' Z D65 ]
{ L' M' S' }= ( ( c 1 + c 2 ( { L M S } 10000 ) n ) ( 1+ c 3 ( { L M S } 10000 ) n ) ) p
[ I z a z b z ]=[ 0.5 0.5 0 3.524000 -4.066708 0.542708 0.199076 1.096799 -1.295875 ][ L' M' S' ]
J z = (1+d) I z 1+d I z d 0
C z = ( a z ) 2 + ( b z ) 2
h z =arctan( b z a z )
Δ E z = ( Δ J z ) 2 + ( Δ C z ) 2 + ( Δ H z ) 2
Y=1.2219V0.23111 V 2 +0.23951 V 3 0.021009 V 4 0.0008404 V 5
I z =( J z + d 0 1+dd( J z + d 0 ) )
[ L' M' S' ]= [ 0.5 0.5 0 3.524000 -4.066708 0.542708 0.199076 1.096799 -1.295875 ] 1 [ I z a z b z ]
{ L,M,S }=10000× ( c 1 ( { L ' , M ' , S ' } ) 1/p c 3 ( { L ' , M ' , S ' } ) 1/p c 2 ) 1/n
[ X D65 ' Y D65 ' Z D65 ' ]= [ 0.41478972 0.579999 0.0146480 -0.2015100 1.120649 0.0531008 -0.0166008 0.264800 0.6684799 ] 1 [ L M S ]
X D65 =( X D65 ' +( b1 ) Z D65 ' )/b
Y D65 =( Y D65 ' +( g1 ) X D65 )/g
Z D65 = Z D65 '

Metrics