Abstract

Gold nanorods (GNRs) are generally considered to be nontoxic to normal and cancer cells. They are usually accumulated at lysosomes after entering into cells, forming GNR clusters in which strong plasmonic coupling between GNRs is expected. We investigated the photothermal therapy of single cancer cells by exploiting the significantly enhanced two-photon-induced absorption of GNR clusters naturally created in the lysosomes of cancer cells. It was revealed numerically that the plasmonic coupling between GNRs in GNR clusters can effectively enhance the photothermal conversion efficiency. As a result, the thermal damage of single cancer cells can be induced by using pulse energy as low as ~70 pJ. In experiments, the locations of GNR clusters can be accurately determined through the detection of the two-photon-induced luminescence, which is also significantly enhanced, by using a confocal laser scanning microscope. The photothermal therapy was conducted by focusing femtosecond laser light on the targeted GNR clusters, generating bubbles and deforming cell membranes. The photothermal therapy proposed in this work can lead to the rapid and acute injury of single cancer cells. The dependence of the apoptosis time on the pulse energy of femtosecond laser light was also examined. Our findings suggest a novel strategy for the photothermal therapy of single cancer cells with ultralow energy.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, “Cancer nanomedicine: progress, challenges and opportunities,” Nat. Rev. Cancer 17(1), 20–37 (2017).
    [Crossref] [PubMed]
  2. W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
    [Crossref] [PubMed]
  3. S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
    [Crossref] [PubMed]
  4. J. Shi, Z. Xiao, N. Kamaly, and O. C. Farokhzad, “Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation,” Acc. Chem. Res. 44(10), 1123–1134 (2011).
    [Crossref] [PubMed]
  5. Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
    [Crossref] [PubMed]
  6. J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
    [Crossref] [PubMed]
  7. J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
    [Crossref] [PubMed]
  8. Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
    [Crossref] [PubMed]
  9. P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
    [Crossref] [PubMed]
  10. M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
    [Crossref] [PubMed]
  11. Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
    [Crossref] [PubMed]
  12. L. Pan, J. Liu, and J. Shi, “Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy,” ACS Appl. Mater. Interfaces 9(19), 15952–15961 (2017).
    [Crossref] [PubMed]
  13. M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, “Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy,” ACS Nano 11(1), 579–586 (2017).
    [Crossref] [PubMed]
  14. M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
    [Crossref] [PubMed]
  15. E. D. Onal and K. Guven, “Plasmonic photothermal therapy in third and fourth biological windows,” J. Phys. Chem. C 121(1), 684–690 (2017).
    [Crossref]
  16. J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
    [Crossref]
  17. X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
    [Crossref] [PubMed]
  18. V. P. Pattani, J. Shah, A. Atalis, A. Sharma, and J. W. Tunnell, “Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy,” J. Nanopart. Res. 17(1), 20–31 (2015).
    [Crossref]
  19. W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
    [Crossref] [PubMed]
  20. J. Nam, N. Won, H. Jin, H. Chung, and S. Kim, “pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy,” J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
    [Crossref] [PubMed]
  21. M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
    [Crossref] [PubMed]
  22. Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
    [Crossref]
  23. S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
    [Crossref] [PubMed]
  24. C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
    [Crossref] [PubMed]
  25. J. L. Li and M. Gu, “Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells,” Biomaterials 31(36), 9492–9498 (2010).
    [Crossref] [PubMed]
  26. W. B. Zhou, X. S. Liu, and J. Ji, “More efficient NIR photothermal therapeutic effect from intracellular heating modality than extracellular heating modality: an in vitro study,” J. Nanopart. Res. 14(9), 1128–1144 (2012).
    [Crossref]
  27. X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
    [Crossref] [PubMed]
  28. L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
    [Crossref]
  29. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  30. T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
    [Crossref] [PubMed]
  31. Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
    [Crossref] [PubMed]
  32. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
    [Crossref] [PubMed]
  33. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
    [Crossref] [PubMed]
  34. Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
    [Crossref] [PubMed]
  35. A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
    [Crossref] [PubMed]
  36. A. Malugin and H. Ghandehari, “Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres,” J. Appl. Toxicol. 30(3), 212–217 (2010).
    [PubMed]
  37. S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
    [Crossref] [PubMed]
  38. C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
    [Crossref] [PubMed]
  39. J. X. Li, Y. Xu, Q. F. Dai, S. Lan, and S. L. Tie, “Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
    [Crossref]
  40. F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
    [Crossref] [PubMed]
  41. K. S. Yee, “Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [Crossref]
  42. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13(10), 2072–2085 (1996).
    [Crossref]
  43. S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
    [Crossref] [PubMed]
  44. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [Crossref] [PubMed]
  45. T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
    [Crossref] [PubMed]
  46. X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
    [Crossref] [PubMed]
  47. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
    [Crossref]
  48. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
    [Crossref] [PubMed]

2017 (5)

J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, “Cancer nanomedicine: progress, challenges and opportunities,” Nat. Rev. Cancer 17(1), 20–37 (2017).
[Crossref] [PubMed]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

L. Pan, J. Liu, and J. Shi, “Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy,” ACS Appl. Mater. Interfaces 9(19), 15952–15961 (2017).
[Crossref] [PubMed]

M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, “Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy,” ACS Nano 11(1), 579–586 (2017).
[Crossref] [PubMed]

E. D. Onal and K. Guven, “Plasmonic photothermal therapy in third and fourth biological windows,” J. Phys. Chem. C 121(1), 684–690 (2017).
[Crossref]

2016 (4)

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
[Crossref] [PubMed]

J. X. Li, Y. Xu, Q. F. Dai, S. Lan, and S. L. Tie, “Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

2015 (5)

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

V. P. Pattani, J. Shah, A. Atalis, A. Sharma, and J. W. Tunnell, “Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy,” J. Nanopart. Res. 17(1), 20–31 (2015).
[Crossref]

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

2014 (1)

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

2013 (8)

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

2012 (5)

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

W. B. Zhou, X. S. Liu, and J. Ji, “More efficient NIR photothermal therapeutic effect from intracellular heating modality than extracellular heating modality: an in vitro study,” J. Nanopart. Res. 14(9), 1128–1144 (2012).
[Crossref]

2011 (5)

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

J. Shi, Z. Xiao, N. Kamaly, and O. C. Farokhzad, “Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation,” Acc. Chem. Res. 44(10), 1123–1134 (2011).
[Crossref] [PubMed]

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

2010 (4)

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

J. L. Li and M. Gu, “Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells,” Biomaterials 31(36), 9492–9498 (2010).
[Crossref] [PubMed]

A. Malugin and H. Ghandehari, “Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres,” J. Appl. Toxicol. 30(3), 212–217 (2010).
[PubMed]

2009 (4)

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
[Crossref] [PubMed]

J. Nam, N. Won, H. Jin, H. Chung, and S. Kim, “pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy,” J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
[Crossref] [PubMed]

2008 (2)

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[Crossref]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

2006 (1)

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

2005 (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

2002 (1)

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

1996 (1)

1966 (1)

K. S. Yee, “Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Aioub, M.

M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, “Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy,” ACS Nano 11(1), 579–586 (2017).
[Crossref] [PubMed]

Al-Abd, A. M.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Al-Ashqar, E.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Alkilany, A. M.

A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
[Crossref] [PubMed]

Altman, M. B.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Arbouet, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Atalis, A.

V. P. Pattani, J. Shah, A. Atalis, A. Sharma, and J. W. Tunnell, “Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy,” J. Nanopart. Res. 17(1), 20–31 (2015).
[Crossref]

Bai, J.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Bai, R.

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Bange, S.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Bao, L.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Bhana, S.

S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Black, K. C. L.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Brech, A.

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

Brida, D.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Brinker, C. J.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Byeon, C. C.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Cai, X.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Celebrano, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Cerullo, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Chan, W. C. W.

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Chen, C.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Chen, J. Y.

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

Chen, L.

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Chen, X.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

Chen, Y.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Chen, Z.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Cheng, C. H. K.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Cheng, J. X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Chithrani, B. D.

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Choi, W. I.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Chou, S. S.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Chu, P. K.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

Chung, H.

J. Nam, N. Won, H. Jin, H. Chung, and S. Kim, “pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy,” J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
[Crossref] [PubMed]

Cui, D.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Dai, Q. F.

J. X. Li, Y. Xu, Q. F. Dai, S. Lan, and S. L. Tie, “Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Dai, Z.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Day, D.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[Crossref]

De, M.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

de la Fuente, J. M.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Del Pino, P.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Deng, H. D.

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Dong, W. F.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Dravid, V. P.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Dujardin, E.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Duò, L.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Eisa, W. H.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

El-Sayed, M. A.

M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, “Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy,” ACS Nano 11(1), 579–586 (2017).
[Crossref] [PubMed]

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

El-Shabrawy, O. A.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

El-Shaer, M. A.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

El-Shenawy, S. M.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Fang, C.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

Farag, N. M.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Farokhzad, O. C.

J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, “Cancer nanomedicine: progress, challenges and opportunities,” Nat. Rev. Cancer 17(1), 20–37 (2017).
[Crossref] [PubMed]

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

J. Shi, Z. Xiao, N. Kamaly, and O. C. Farokhzad, “Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation,” Acc. Chem. Res. 44(10), 1123–1134 (2011).
[Crossref] [PubMed]

Feng, J.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Finazzi, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Foley, B. M.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Frieder, J.

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

Fu, S.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Gálvez, E. M.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Gao, B.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Gao, G.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Gao, H.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Gao, N.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Gao, W.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Ghandehari, H.

A. Malugin and H. Ghandehari, “Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres,” J. Appl. Toxicol. 30(3), 212–217 (2010).
[PubMed]

Ghazani, A. A.

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Girard, C.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Grancini, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Groothuis, T. A. M.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

Gu, M.

J. L. Li and M. Gu, “Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells,” Biomaterials 31(36), 9492–9498 (2010).
[Crossref] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[Crossref]

Guan, Z.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Guven, K.

E. D. Onal and K. Guven, “Plasmonic photothermal therapy in third and fourth biological windows,” J. Phys. Chem. C 121(1), 684–690 (2017).
[Crossref]

Haug, T.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

He, M.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Helm, P. J.

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

Henderson, L.

S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
[Crossref] [PubMed]

Hexel, C. R.

A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
[Crossref] [PubMed]

Hopkins, P. E.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Hu, J.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Hu, Z.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Huang, C. Z.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Huang, H.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

Huang, J.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Huang, P.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Huang, X.

S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
[Crossref] [PubMed]

Huang, Y.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Huo, Q. S.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Jacobson, O.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

Janssen, H.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

Ji, C.

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

Ji, J.

W. B. Zhou, X. S. Liu, and J. Ji, “More efficient NIR photothermal therapeutic effect from intracellular heating modality than extracellular heating modality: an in vitro study,” J. Nanopart. Res. 14(9), 1128–1144 (2012).
[Crossref]

Ji, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Ji, Y.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Jia, H.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Jiang, C.

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Jiang, X.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Jiang, X. F.

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Jin, H.

J. Nam, N. Won, H. Jin, H. Chung, and S. Kim, “pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy,” J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
[Crossref] [PubMed]

Johnson, J.

S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
[Crossref] [PubMed]

Kaehr, B.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Kamaly, N.

J. Shi, Z. Xiao, N. Kamaly, and O. C. Farokhzad, “Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation,” Acc. Chem. Res. 44(10), 1123–1134 (2011).
[Crossref] [PubMed]

Kang, C.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Kantoff, P. W.

J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, “Cancer nanomedicine: progress, challenges and opportunities,” Nat. Rev. Cancer 17(1), 20–37 (2017).
[Crossref] [PubMed]

Kim, F.

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

Kim, J.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Kim, J. Y.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Kim, P.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Kim, S.

J. Nam, N. Won, H. Jin, H. Chung, and S. Kim, “pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy,” J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
[Crossref] [PubMed]

Kim, Y. H.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Klemm, P.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Ko, C. H.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Kooyman, R. P. H.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

Kroes, R.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

Lan, S.

J. X. Li, Y. Xu, Q. F. Dai, S. Lan, and S. L. Tie, “Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Li, G. C.

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Li, J.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Li, J. L.

J. L. Li and M. Gu, “Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells,” Biomaterials 31(36), 9492–9498 (2010).
[Crossref] [PubMed]

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[Crossref]

Li, J. X.

J. X. Li, Y. Xu, Q. F. Dai, S. Lan, and S. L. Tie, “Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

Li, L.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Li, M.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Li, P.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

Li, W.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Li, X.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Li, Y.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Li, Z. Y.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Lin, J.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Lin, L.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

Liou, K. N.

Liu, C.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

Liu, F.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Liu, G. Y.

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Liu, J.

L. Pan, J. Liu, and J. Shi, “Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy,” ACS Appl. Mater. Interfaces 9(19), 15952–15961 (2017).
[Crossref] [PubMed]

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Liu, S. Y.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Liu, X. S.

W. B. Zhou, X. S. Liu, and J. Ji, “More efficient NIR photothermal therapeutic effect from intracellular heating modality than extracellular heating modality: an in vitro study,” J. Nanopart. Res. 14(9), 1128–1144 (2012).
[Crossref]

Liu, Y.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Luehmann, H.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Luo, T.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Lupton, J. M.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Ma, Q.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

Mahmoud, S. S.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Malugin, A.

A. Malugin and H. Ghandehari, “Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres,” J. Appl. Toxicol. 30(3), 212–217 (2010).
[PubMed]

Manohar, S.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

Marty, R.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Mátéfi-Tempfli, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Mátéfi-Tempfli, S.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Mei, L.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Ming, T.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Mitchell, S. G.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Moros, M.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Murphy, C. J.

A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
[Crossref] [PubMed]

Nagaria, P. K.

A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
[Crossref] [PubMed]

Nam, J.

J. Nam, N. Won, H. Jin, H. Chung, and S. Kim, “pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy,” J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
[Crossref] [PubMed]

Niu, G.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

O’Connor, R.

S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
[Crossref] [PubMed]

Onal, E. D.

E. D. Onal and K. Guven, “Plasmonic photothermal therapy in third and fourth biological windows,” J. Phys. Chem. C 121(1), 684–690 (2017).
[Crossref]

Pan, L.

L. Pan, J. Liu, and J. Shi, “Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy,” ACS Appl. Mater. Interfaces 9(19), 15952–15961 (2017).
[Crossref] [PubMed]

Pan, Y.

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Pang, Z.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Panikkanvalappil, S. R.

M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, “Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy,” ACS Nano 11(1), 579–586 (2017).
[Crossref] [PubMed]

Parak, W. J.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Pardo, J.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Pattani, V. P.

V. P. Pattani, J. Shah, A. Atalis, A. Sharma, and J. W. Tunnell, “Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy,” J. Nanopart. Res. 17(1), 20–31 (2015).
[Crossref]

Pelaz, B.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Peng, Q.

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

Pérez-Hernández, M.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Petersen, W.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

Pridgen, E. M.

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

Qian, Y.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Qiu, Y.

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Ren, J.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Salah, N.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Savoini, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Shabaka, A. A.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Shah, J.

V. P. Pattani, J. Shah, A. Atalis, A. Sharma, and J. W. Tunnell, “Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy,” J. Nanopart. Res. 17(1), 20–31 (2015).
[Crossref]

Shao, D.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Shao, L.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Sharma, A.

V. P. Pattani, J. Shah, A. Atalis, A. Sharma, and J. W. Tunnell, “Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy,” J. Nanopart. Res. 17(1), 20–31 (2015).
[Crossref]

Sharma, J.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Shaw, T. J.

A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
[Crossref] [PubMed]

Shen, S.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Shen, X.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Shi, J.

L. Pan, J. Liu, and J. Shi, “Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy,” ACS Appl. Mater. Interfaces 9(19), 15952–15961 (2017).
[Crossref] [PubMed]

J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, “Cancer nanomedicine: progress, challenges and opportunities,” Nat. Rev. Cancer 17(1), 20–37 (2017).
[Crossref] [PubMed]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

J. Shi, Z. Xiao, N. Kamaly, and O. C. Farokhzad, “Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation,” Acc. Chem. Res. 44(10), 1123–1134 (2011).
[Crossref] [PubMed]

Shukoor, M. I.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Song, E.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Song, J.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

Song, J. H.

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

Stepien, G.

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

Sun, H. B.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Sun, M.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Sun, X.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

Sun, Z.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Tae, G.

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Tan, W.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Tang, H.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Tang, S.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

Tao, W.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Teulle, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Tie, S. L.

J. X. Li, Y. Xu, Q. F. Dai, S. Lan, and S. L. Tie, “Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Tunnell, J. W.

V. P. Pattani, J. Shah, A. Atalis, A. Sharma, and J. W. Tunnell, “Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy,” J. Nanopart. Res. 17(1), 20–31 (2015).
[Crossref]

Ungureanu, C.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

Ungureanu, F.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

van Leeuwen, F. W. B.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

van Leeuwen, T. G.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

Venkatesan, T.

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Viarbitskaya, S.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Wan, D.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Wang, D.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Wang, H.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Wang, J.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Wang, K.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Wang, L.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Wang, L. V.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Wang, W.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Wang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Wang, Y. S.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Wang, Y. X. J.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Wei, Y.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Won, N.

J. Nam, N. Won, H. Jin, H. Chung, and S. Kim, “pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy,” J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
[Crossref] [PubMed]

Wooster, R.

J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, “Cancer nanomedicine: progress, challenges and opportunities,” Nat. Rev. Cancer 17(1), 20–37 (2017).
[Crossref] [PubMed]

Wu, J.

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

Wu, X.

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Wyatt, M. D.

A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
[Crossref] [PubMed]

Xia, H.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Xia, Y.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Xiao, Q.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Xiao, Z.

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

J. Shi, Z. Xiao, N. Kamaly, and O. C. Farokhzad, “Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation,” Acc. Chem. Res. 44(10), 1123–1134 (2011).
[Crossref] [PubMed]

Xu, G. Q.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Xu, L.

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Xu, Q. H.

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Xu, Y.

J. X. Li, Y. Xu, Q. F. Dai, S. Lan, and S. L. Tie, “Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

Yan, X.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

Yang, B.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Yang, D.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Yang, P.

Yang, W.

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Yang, X.

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

Yao, S. Q.

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Yassin, N. A.

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Yee, K. S.

K. S. Yee, “Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

You, M.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Yu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Yu, X. F.

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

Yuan, P.

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Zeng, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Zhang, C.

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

Zhang, H.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

Zhang, K.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Zhang, L.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Zhang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

Zhang, X. L.

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Zhang, Y.

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Zhao, C.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Zhao, T.

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

Zhao, Y.

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

Zhou, W. B.

W. B. Zhou, X. S. Liu, and J. Ji, “More efficient NIR photothermal therapeutic effect from intracellular heating modality than extracellular heating modality: an in vitro study,” J. Nanopart. Res. 14(9), 1128–1144 (2012).
[Crossref]

Zhu, G.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Zhu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Zhu, X. M.

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

Zhu, Y.

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Zhu, Z.

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Ziebarth, J. D.

S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. Shi, Z. Xiao, N. Kamaly, and O. C. Farokhzad, “Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation,” Acc. Chem. Res. 44(10), 1123–1134 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. Pan, J. Liu, and J. Shi, “Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy,” ACS Appl. Mater. Interfaces 9(19), 15952–15961 (2017).
[Crossref] [PubMed]

ACS Nano (5)

M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, “Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy,” ACS Nano 11(1), 579–586 (2017).
[Crossref] [PubMed]

M. Pérez-Hernández, P. Del Pino, S. G. Mitchell, M. Moros, G. Stepien, B. Pelaz, W. J. Parak, E. M. Gálvez, J. Pardo, and J. M. de la Fuente, “Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms,” ACS Nano 9(1), 52–61 (2015).
[Crossref] [PubMed]

J. Wang, G. Zhu, M. You, E. Song, M. I. Shukoor, K. Zhang, M. B. Altman, Y. Chen, Z. Zhu, C. Z. Huang, and W. Tan, “Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy,” ACS Nano 6(6), 5070–5077 (2012).
[Crossref] [PubMed]

Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z. Y. Li, L. V. Wang, Y. Liu, and Y. Xia, “Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment,” ACS Nano 7(3), 2068–2077 (2013).
[Crossref] [PubMed]

W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5(3), 1995–2003 (2011).
[Crossref] [PubMed]

Adv. Mater. (4)

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

J. Song, X. Yang, O. Jacobson, P. Huang, X. Sun, L. Lin, X. Yan, G. Niu, Q. Ma, and X. Chen, “Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy,” Adv. Mater. 27(33), 4910–4917 (2015).
[Crossref] [PubMed]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, and O. C. Farokhzad, “DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy,” Angew. Chem. Int. Ed. Engl. 51(47), 11853–11857 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. S. Wang, D. Shao, L. Zhang, X. L. Zhang, J. Li, J. Feng, H. Xia, Q. S. Huo, W. F. Dong, and H. B. Sun, “Gold nanorods-silica Janus nanoparticles for theranostics,” Appl. Phys. Lett. 106(17), 173705 (2015).
[Crossref]

Biomaterials (6)

J. L. Li and M. Gu, “Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells,” Biomaterials 31(36), 9492–9498 (2010).
[Crossref] [PubMed]

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen, “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials 31(30), 7606–7619 (2010).
[Crossref] [PubMed]

S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang, “Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation,” Biomaterials 34(12), 3150–3158 (2013).
[Crossref] [PubMed]

P. Huang, L. Bao, C. Zhang, J. Lin, T. Luo, D. Yang, M. He, Z. Li, G. Gao, B. Gao, S. Fu, and D. Cui, “Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy,” Biomaterials 32(36), 9796–9809 (2011).
[Crossref] [PubMed]

X. Wu, J. Y. Chen, A. Brech, C. Fang, J. Wang, P. J. Helm, and Q. Peng, “The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells,” Biomaterials 34(26), 6157–6162 (2013).
[Crossref] [PubMed]

Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, “Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy,” Biomaterials 74, 144–154 (2016).
[Crossref] [PubMed]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

J. Am. Chem. Soc. (2)

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

J. Nam, N. Won, H. Jin, H. Chung, and S. Kim, “pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy,” J. Am. Chem. Soc. 131(38), 13639–13645 (2009).
[Crossref] [PubMed]

J. Appl. Toxicol. (1)

A. Malugin and H. Ghandehari, “Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres,” J. Appl. Toxicol. 30(3), 212–217 (2010).
[PubMed]

J. Colloid Interface Sci. (1)

S. Bhana, R. O’Connor, J. Johnson, J. D. Ziebarth, L. Henderson, and X. Huang, “Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy,” J. Colloid Interface Sci. 469, 8–16 (2016).
[Crossref] [PubMed]

J. Nanopart. Res. (2)

W. B. Zhou, X. S. Liu, and J. Ji, “More efficient NIR photothermal therapeutic effect from intracellular heating modality than extracellular heating modality: an in vitro study,” J. Nanopart. Res. 14(9), 1128–1144 (2012).
[Crossref]

V. P. Pattani, J. Shah, A. Atalis, A. Sharma, and J. W. Tunnell, “Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy,” J. Nanopart. Res. 17(1), 20–31 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (2)

E. D. Onal and K. Guven, “Plasmonic photothermal therapy in third and fourth biological windows,” J. Phys. Chem. C 121(1), 684–690 (2017).
[Crossref]

L. Chen, G. C. Li, G. Y. Liu, Q. F. Dai, S. Lan, S. L. Tie, and H. D. Deng, “Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

X. F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q. H. Xu, “Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

J. X. Li, Y. Xu, Q. F. Dai, S. Lan, and S. L. Tie, “Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

Nano Lett. (3)

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett. 11(5), 1887–1894 (2011).
[Crossref] [PubMed]

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Nanoscale (3)

T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4(24), 7712–7719 (2012).
[Crossref] [PubMed]

X. M. Zhu, C. Fang, H. Jia, Y. Huang, C. H. K. Cheng, C. H. Ko, Z. Chen, J. Wang, and Y. X. J. Wang, “Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings,” Nanoscale 6(19), 11462–11472 (2014).
[Crossref] [PubMed]

M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, “Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Nanoscale 8(8), 4452–4457 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, “Cancer nanomedicine: progress, challenges and opportunities,” Nat. Rev. Cancer 17(1), 20–37 (2017).
[Crossref] [PubMed]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Phys. Rev. Lett. (2)

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

PLoS One (1)

M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S. S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W. H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, and A. M. Al-Abd, “Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model,” PLoS One 8(10), e76207 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Small (2)

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small 5(6), 701–708 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Physical models for GNR clusters without (a) and with (b) plasmonic coupling between GNRs. The volumes of the boxes in which 100 GNRs with random orientations and positions are enclosed are 300 × 300 × 300 nm3 (a) and 200 × 200 × 200 nm3 (b), respectively.

Fig. 2
Fig. 2

Linear and nonlinear absorption spectra calculated for the GNR clusters containing 100 GNRs enclosed in a box with a volume of 300 × 300 × 300 nm3 (a) and 200 × 200 × 200 nm3 (b). (c) Normalized nonlinear absorption (or TPA) of the 100 GNRs in the two GNR clusters plotted in a descending order. The wavelengths of the incident light were chosen at the nonlinear absorption peaks of the corresponding GNR clusters (i.e., 860 and 1010 nm)

Fig. 3
Fig. 3

Two-dimensional temperature distributions on the YZ plane simulated for the two GNR clusters without (a) and with (b) plasmonic coupling which are shown in Figs. 1(a) and 1(b), respectively. The black circles represent the cross sections of the GNRs on the YZ plane.

Fig. 4
Fig. 4

(a) TEM image of the synthesized GNRs. (b) Absorption spectrum of the GNRs dispersed in water. (c) Cytotoxicity of GNRs against HepG2 cells. (d) Uptake of the GNRs measured for HepG2 cells.

Fig. 5
Fig. 5

(a) TEM image of a HepG2 cell which has been cultured with GNRs for 24 hours. (b) TEM image of a GNR cluster naturally created in the lysosome of the HepG2 cell.

Fig. 6
Fig. 6

TPL and bright field images recorded for HepG2 cells not incubated with GNRs [(a) and (b)] and incubated with GNRs [(d) and (e)]. The merged images for the two types of HepG2 cells are shown in (c) and (f), respectively. The length of the scale bar is 20 μm.

Fig. 7
Fig. 7

(a) Bright field image of the chosen cell. (b)−(l) Evolution of the cell morphology and TPL image when the cell was exposed to the fs laser light in different time of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 s, respectively. The length of the scale bar is 20 μm.

Fig. 8
Fig. 8

HepG2 cells before (a) and after (b) photothermal therapy. (c) Evolution of the TPL spectrum of the excited GNR cluster during the photothermal therapy. The length of the scale bar is 20 μm.

Fig. 9
Fig. 9

Bright field images of the cells on which the photothermal therapy were carried out (black and white images). The color images show the cells dyed with Trypan Blue after the photothermal therapy. Laser light with different pulse energies of 157, 122, 87, and 70 pJ was employed in the photothermal therapy experiments. The cells after the irradiation of the laser light were dyed with Trypan Blue after different interval times of 0, 0.5, 1.0, and 2.0 hours. The length of the scale bar is 20 μm. The blue color appearing in some areas without dead cells is caused by Trypan Blue which did not diffuse uniformly in the experiment. For pulse energy of 87 pJ, there were occasionally two dead cells near the targeted cell on which the photothermal therapy was carried out.

Fig. 10
Fig. 10

Dependence of the apoptosis time of the HepG2 cells on the pulse energy of the irradiation light for a fixed irradiation time of 20 s.

Metrics