Abstract

High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample’s nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm2, where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼104 μm2. Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution endoscopy for real-time wide-field imaging

Feifei Wang, Hok Sum Sam Lai, Lianqing Liu, Pan Li, Haibo Yu, Zhu Liu, Yuechao Wang, and Wen Jung Li
Opt. Express 23(13) 16803-16811 (2015)

Fast, super resolution imaging via Bessel-beam stimulated emission depletion microscopy

P. Zhang, P. M. Goodwin, and J. H. Werner
Opt. Express 22(10) 12398-12409 (2014)

Superlensing microscope objective lens

Bing Yan, Zengbo Wang, Alan L. Parker, Yu-kun Lai, P. John Thomas, Liyang Yue, and James N. Monks
Appl. Opt. 56(11) 3142-3147 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  3. H. Cang, A. Salandrino, Y. Wang, and X. Zhang, “Adiabatic far-field sub-diffraction imaging,” Nat. Commun. 6, 7942 (2015).
    [Crossref] [PubMed]
  4. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
    [Crossref]
  5. M.-S. Kim, T. Scharf, M. Brun, S. Olivier, S. Nicoletti, and H. P. Herzig, “Advanced optical characterization of micro solid immersion lens,” in C. Gorecki, A. K. Asundi, and W. Osten, eds. (2012), p. 84300E–84300E–10.
  6. D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
    [Crossref] [PubMed]
  7. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
    [Crossref]
  8. H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Fluorescence Imaging: Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1876 (2014).
    [Crossref]
  9. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  10. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
    [Crossref]
  11. H. Yang and M. A. M. Gijs, “Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures,” Microelectron. Eng. 143, 86–90 (2015).
    [Crossref]
  12. F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
    [Crossref] [PubMed]
  13. D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35(12), 2007–2009 (2010).
    [Crossref] [PubMed]
  14. X. Chen, Z. Zeng, H. Wang, and P. Xi, “Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes,” Nano Res. 8(7), 2251–2260 (2015).
    [Crossref]
  15. J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods12, (2015).
  16. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  17. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  18. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005).
    [Crossref] [PubMed]
  19. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  20. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  21. C. J. Engelbrecht and E. H. Stelzer, “Resolution enhancement in a light-sheet-based microscope (SPIM),” Opt. Lett. 31(10), 1477–1479 (2006).
    [Crossref] [PubMed]
  22. E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
    [Crossref] [PubMed]
  23. E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet microscopy for adventurous biologists,” Nat. Methods 12(1), 30–34 (2015).
    [Crossref] [PubMed]
  24. T. Uchihashi, H. Watanabe, S. Fukuda, M. Shibata, and T. Ando, “Functional extension of high-speed AFM for wider biological applications,” Ultramicroscopy 160, 182–196 (2016).
    [Crossref] [PubMed]
  25. S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
    [Crossref] [PubMed]
  26. P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
    [Crossref]
  27. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
    [Crossref]
  28. M. Cascione, V. de Matteis, R. Rinaldi, and S. Leporatti, “Atomic force microscopy combined with optical microscopy for cells investigation: AFM Combined with Optical Microscopy,” Microsc. Res. Tech. 80(1), 109–123 (2016).
  29. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
    [Crossref] [PubMed]
  30. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
    [Crossref]
  31. Z. B. Wang, N. Joseph, L. Li, and B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(5), 1113–1127 (2010).
    [Crossref]
  32. N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
    [Crossref] [PubMed]
  33. F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
    [Crossref] [PubMed]
  34. T. Xiang, G.-S. Xia, X. Bai, and L. Zhang, “Image Stitching by Line-guided Local Warping with Global Similarity Constraint,” ArXiv Prepr. ArXiv170207935 (2017).
  35. L. Juan and G. Oubong, “SURF applied in panorama image stitching,” in Image Processing Theory Tools and Applications (IPTA),20102nd International Conference on (IEEE, 2010), pp. 495–499.
    [Crossref]
  36. J. Jia and C.-K. Tang, “Image Stitching Using Structure Deformation,” IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 617–631 (2008).
    [Crossref] [PubMed]
  37. A. Zomet, A. Levin, S. Peleg, and Y. Weiss, “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Process. 15(4), 969–977 (2006).
    [Crossref] [PubMed]
  38. R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mosaics and environment maps,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley Publishing Co., 1997), pp. 251–258.
    [Crossref]
  39. H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
    [Crossref] [PubMed]
  40. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
    [Crossref] [PubMed]
  41. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005).
    [Crossref] [PubMed]
  42. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [Crossref] [PubMed]
  43. A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
    [Crossref] [PubMed]
  44. S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
    [Crossref]
  45. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  46. T. R. Kumar and R. V. Krishnaiah, “Optical Disk with Blu-Ray Technology,” ArXiv Prepr. ArXiv13101551 (2013).

2016 (5)

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

T. Uchihashi, H. Watanabe, S. Fukuda, M. Shibata, and T. Ando, “Functional extension of high-speed AFM for wider biological applications,” Ultramicroscopy 160, 182–196 (2016).
[Crossref] [PubMed]

M. Cascione, V. de Matteis, R. Rinaldi, and S. Leporatti, “Atomic force microscopy combined with optical microscopy for cells investigation: AFM Combined with Optical Microscopy,” Microsc. Res. Tech. 80(1), 109–123 (2016).

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

2015 (4)

E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet microscopy for adventurous biologists,” Nat. Methods 12(1), 30–34 (2015).
[Crossref] [PubMed]

X. Chen, Z. Zeng, H. Wang, and P. Xi, “Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes,” Nano Res. 8(7), 2251–2260 (2015).
[Crossref]

H. Yang and M. A. M. Gijs, “Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures,” Microelectron. Eng. 143, 86–90 (2015).
[Crossref]

H. Cang, A. Salandrino, Y. Wang, and X. Zhang, “Adiabatic far-field sub-diffraction imaging,” Nat. Commun. 6, 7942 (2015).
[Crossref] [PubMed]

2014 (5)

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Fluorescence Imaging: Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1876 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
[Crossref]

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

2013 (3)

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

2012 (1)

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

2011 (2)

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

2010 (2)

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(5), 1113–1127 (2010).
[Crossref]

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35(12), 2007–2009 (2010).
[Crossref] [PubMed]

2009 (2)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

2008 (3)

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
[Crossref] [PubMed]

J. Jia and C.-K. Tang, “Image Stitching Using Structure Deformation,” IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 617–631 (2008).
[Crossref] [PubMed]

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

2006 (4)

A. Zomet, A. Levin, S. Peleg, and Y. Weiss, “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Process. 15(4), 969–977 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

C. J. Engelbrecht and E. H. Stelzer, “Resolution enhancement in a light-sheet-based microscope (SPIM),” Opt. Lett. 31(10), 1477–1479 (2006).
[Crossref] [PubMed]

2005 (3)

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005).
[Crossref] [PubMed]

2003 (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

2000 (3)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1999 (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[Crossref]

1994 (1)

Ammann, E.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Ando, T.

T. Uchihashi, H. Watanabe, S. Fukuda, M. Shibata, and T. Ando, “Functional extension of high-speed AFM for wider biological applications,” Ultramicroscopy 160, 182–196 (2016).
[Crossref] [PubMed]

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

Astratov, V. N.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Fluorescence Imaging: Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1876 (2014).
[Crossref]

Backman, V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Ben-Aryeh, Y.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Blom, H.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bonod, N.

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Cang, H.

H. Cang, A. Salandrino, Y. Wang, and X. Zhang, “Adiabatic far-field sub-diffraction imaging,” Nat. Commun. 6, 7942 (2015).
[Crossref] [PubMed]

Cascione, M.

M. Cascione, V. de Matteis, R. Rinaldi, and S. Leporatti, “Atomic force microscopy combined with optical microscopy for cells investigation: AFM Combined with Optical Microscopy,” Microsc. Res. Tech. 80(1), 109–123 (2016).

Challener, W. A.

Chen, X.

X. Chen, Z. Zeng, H. Wang, and P. Xi, “Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes,” Nano Res. 8(7), 2251–2260 (2015).
[Crossref]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Cho, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Choi, Y. W.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Darafsheh, A.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

de Matteis, V.

M. Cascione, V. de Matteis, R. Rinaldi, and S. Leporatti, “Atomic force microscopy combined with optical microscopy for cells investigation: AFM Combined with Optical Microscopy,” Microsc. Res. Tech. 80(1), 109–123 (2016).

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Dekhter, R.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Devilez, A.

Eggeling, C.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005).
[Crossref] [PubMed]

Engelbrecht, C. J.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Ferrand, P.

Fukuda, S.

T. Uchihashi, H. Watanabe, S. Fukuda, M. Shibata, and T. Ando, “Functional extension of high-speed AFM for wider biological applications,” Ultramicroscopy 160, 182–196 (2016).
[Crossref] [PubMed]

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

Gijs, M. A. M.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

H. Yang and M. A. M. Gijs, “Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures,” Microelectron. Eng. 143, 86–90 (2015).
[Crossref]

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Fluorescence Imaging: Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1876 (2014).
[Crossref]

Greger, K.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hapala, P.

P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
[Crossref]

Hartschuh, A.

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Heifetz, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

Hell, S. W.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Herzig, H. P.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Huff, J.

J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods12, (2015).

Huisken, J.

E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet microscopy for adventurous biologists,” Nat. Methods 12(1), 30–34 (2015).
[Crossref] [PubMed]

Huszka, G.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Hwang, I.-C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Igarashi, K.

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

Iino, R.

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

Itagi, A. V.

Jelínek, P.

P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
[Crossref]

Jia, J.

J. Jia and C.-K. Tang, “Image Stitching Using Structure Deformation,” IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 617–631 (2008).
[Crossref] [PubMed]

Joseph, N.

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(5), 1113–1127 (2010).
[Crossref]

Jouravlev, M. V.

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35(12), 2007–2009 (2010).
[Crossref] [PubMed]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kang, D.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Kastrup, L.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005).
[Crossref] [PubMed]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Keilmann, F.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Khatchatouriants, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Kichin, G.

P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
[Crossref]

Kim, K. S.

D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35(12), 2007–2009 (2010).
[Crossref] [PubMed]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, M.-S.

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, S. M.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Knoll, B.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[Crossref]

Kong, S.-C.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

Kržic, U.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Lee, S.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Leporatti, S.

M. Cascione, V. de Matteis, R. Rinaldi, and S. Leporatti, “Atomic force microscopy combined with optical microscopy for cells investigation: AFM Combined with Optical Microscopy,” Microsc. Res. Tech. 80(1), 109–123 (2016).

Levin, A.

A. Zomet, A. Levin, S. Peleg, and Y. Weiss, “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Process. 15(4), 969–977 (2006).
[Crossref] [PubMed]

Lewis, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(5), 1113–1127 (2010).
[Crossref]

Li, W. J.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Limberopoulos, N. I.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, L.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

Liu, Z.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(5), 1113–1127 (2010).
[Crossref]

Manevitch, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Martin, O. J.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Mason, D. R.

Mauser, N.

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Fluorescence Imaging: Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1876 (2014).
[Crossref]

Mühlig, S.

Okazaki, Y.

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pang, C.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peleg, S.

A. Zomet, A. Levin, S. Peleg, and Y. Weiss, “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Process. 15(4), 969–977 (2006).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Peychl, J.

E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet microscopy for adventurous biologists,” Nat. Methods 12(1), 30–34 (2015).
[Crossref] [PubMed]

Pianta, M.

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Popov, E.

Reynaud, E. G.

E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet microscopy for adventurous biologists,” Nat. Methods 12(1), 30–34 (2015).
[Crossref] [PubMed]

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Rigneault, H.

Rinaldi, R.

M. Cascione, V. de Matteis, R. Rinaldi, and S. Leporatti, “Atomic force microscopy combined with optical microscopy for cells investigation: AFM Combined with Optical Microscopy,” Microsc. Res. Tech. 80(1), 109–123 (2016).

Rockstuhl, C.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Sahakian, A. V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

Salandrino, A.

H. Cang, A. Salandrino, Y. Wang, and X. Zhang, “Adiabatic far-field sub-diffraction imaging,” Nat. Commun. 6, 7942 (2015).
[Crossref] [PubMed]

Scharf, T.

Shibata, M.

T. Uchihashi, H. Watanabe, S. Fukuda, M. Shibata, and T. Ando, “Functional extension of high-speed AFM for wider biological applications,” Ultramicroscopy 160, 182–196 (2016).
[Crossref] [PubMed]

Shum, H.-Y.

R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mosaics and environment maps,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley Publishing Co., 1997), pp. 251–258.
[Crossref]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Stelzer, E. H.

Stelzer, E. H. K.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Stout, B.

Strinkovski, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Suh, K. Y.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Szeliski, R.

R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mosaics and environment maps,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley Publishing Co., 1997), pp. 251–258.
[Crossref]

Taflove, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

Taha, H.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Tang, C.-K.

J. Jia and C.-K. Tang, “Image Stitching Using Structure Deformation,” IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 617–631 (2008).
[Crossref] [PubMed]

Tautz, F. S.

P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
[Crossref]

Temirov, R.

P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
[Crossref]

Tomancak, P.

E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet microscopy for adventurous biologists,” Nat. Methods 12(1), 30–34 (2015).
[Crossref] [PubMed]

Trouillon, R.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Uchihashi, T.

T. Uchihashi, H. Watanabe, S. Fukuda, M. Shibata, and T. Ando, “Functional extension of high-speed AFM for wider biological applications,” Ultramicroscopy 160, 182–196 (2016).
[Crossref] [PubMed]

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

Um, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Wagner, C.

P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
[Crossref]

Walker, D. E.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Wang, F.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

Wang, H.

X. Chen, Z. Zeng, H. Wang, and P. Xi, “Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes,” Nano Res. 8(7), 2251–2260 (2015).
[Crossref]

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Wang, Y.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

H. Cang, A. Salandrino, Y. Wang, and X. Zhang, “Adiabatic far-field sub-diffraction imaging,” Nat. Commun. 6, 7942 (2015).
[Crossref] [PubMed]

Wang, Z.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Wang, Z. B.

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(5), 1113–1127 (2010).
[Crossref]

Watanabe, H.

T. Uchihashi, H. Watanabe, S. Fukuda, M. Shibata, and T. Ando, “Functional extension of high-speed AFM for wider biological applications,” Ultramicroscopy 160, 182–196 (2016).
[Crossref] [PubMed]

Weiss, Y.

A. Zomet, A. Levin, S. Peleg, and Y. Weiss, “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Process. 15(4), 969–977 (2006).
[Crossref] [PubMed]

Wen, Y.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

Wenger, J.

Wichmann, J.

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Xi, P.

X. Chen, Z. Zeng, H. Wang, and P. Xi, “Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes,” Nano Res. 8(7), 2251–2260 (2015).
[Crossref]

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Yang, H.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

H. Yang and M. A. M. Gijs, “Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures,” Microelectron. Eng. 143, 86–90 (2015).
[Crossref]

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Fluorescence Imaging: Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1876 (2014).
[Crossref]

Yoshida, M.

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

Yu, H.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Yu, P.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

Zeng, Z.

X. Chen, Z. Zeng, H. Wang, and P. Xi, “Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes,” Nano Res. 8(7), 2251–2260 (2015).
[Crossref]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Zhang, X.

H. Cang, A. Salandrino, Y. Wang, and X. Zhang, “Adiabatic far-field sub-diffraction imaging,” Nat. Commun. 6, 7942 (2015).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zomet, A.

A. Zomet, A. Levin, S. Peleg, and Y. Weiss, “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Process. 15(4), 969–977 (2006).
[Crossref] [PubMed]

ACS Nano (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-Controllable Microlens Arrays via Direct Transfer of Photocurable Polymer Droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Chem. Soc. Rev. (1)

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

HFSP J. (1)

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

IEEE Trans. Image Process. (1)

A. Zomet, A. Levin, S. Peleg, and Y. Weiss, “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Process. 15(4), 969–977 (2006).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Jia and C.-K. Tang, “Image Stitching Using Structure Deformation,” IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 617–631 (2008).
[Crossref] [PubMed]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

J. Comput. Theor. Nanosci. (1)

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. (1)

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Microelectron. Eng. (1)

H. Yang and M. A. M. Gijs, “Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures,” Microelectron. Eng. 143, 86–90 (2015).
[Crossref]

Microsc. Res. Tech. (1)

M. Cascione, V. de Matteis, R. Rinaldi, and S. Leporatti, “Atomic force microscopy combined with optical microscopy for cells investigation: AFM Combined with Optical Microscopy,” Microsc. Res. Tech. 80(1), 109–123 (2016).

Nano Lett. (1)

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Nano Res. (1)

X. Chen, Z. Zeng, H. Wang, and P. Xi, “Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes,” Nano Res. 8(7), 2251–2260 (2015).
[Crossref]

Nat. Biotechnol. (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Nat. Commun. (3)

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref] [PubMed]

H. Cang, A. Salandrino, Y. Wang, and X. Zhang, “Adiabatic far-field sub-diffraction imaging,” Nat. Commun. 6, 7942 (2015).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical Virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Nat. Methods (2)

E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet microscopy for adventurous biologists,” Nat. Methods 12(1), 30–34 (2015).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Nature (2)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, and P. Jelínek, “Mechanism of high-resolution STM/AFM imaging with functionalized tips,” Phys. Rev. B 90(8), 085421 (2014).
[Crossref]

Phys. Rev. Lett. (2)

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (1)

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk’yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(5), 1113–1127 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

S. Fukuda, T. Uchihashi, R. Iino, Y. Okazaki, M. Yoshida, K. Igarashi, and T. Ando, “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Rev. Sci. Instrum. 84(7), 073706 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6(1), 24703 (2016).
[Crossref] [PubMed]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Fluorescence Imaging: Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10(9), 1876 (2014).
[Crossref]

Ultramicroscopy (1)

T. Uchihashi, H. Watanabe, S. Fukuda, M. Shibata, and T. Ando, “Functional extension of high-speed AFM for wider biological applications,” Ultramicroscopy 160, 182–196 (2016).
[Crossref] [PubMed]

Other (6)

T. Xiang, G.-S. Xia, X. Bai, and L. Zhang, “Image Stitching by Line-guided Local Warping with Global Similarity Constraint,” ArXiv Prepr. ArXiv170207935 (2017).

L. Juan and G. Oubong, “SURF applied in panorama image stitching,” in Image Processing Theory Tools and Applications (IPTA),20102nd International Conference on (IEEE, 2010), pp. 495–499.
[Crossref]

J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods12, (2015).

M.-S. Kim, T. Scharf, M. Brun, S. Olivier, S. Nicoletti, and H. P. Herzig, “Advanced optical characterization of micro solid immersion lens,” in C. Gorecki, A. K. Asundi, and W. Osten, eds. (2012), p. 84300E–84300E–10.

R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mosaics and environment maps,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (ACM Press/Addison-Wesley Publishing Co., 1997), pp. 251–258.
[Crossref]

T. R. Kumar and R. V. Krishnaiah, “Optical Disk with Blu-Ray Technology,” ArXiv Prepr. ArXiv13101551 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of operation of the super-resolution scanning optical microscope. a) A dielectric microsphere with refractive index nsphere and situated in an optical medium with refractive index nmedium is placed on top of the sample and is observed by a classical optical microscope objective. This generates a virtual image below the sample plane, which shows super-resolution. b) Schematic cross-section of the experimental setup, allowing scanning of the sample with respect to the microsphere-objective system. 1: microscope objective; 2: fixation holder to the objective; 3: four metal rods are used for fixing element number 4, i.e. a metal frame with circular opening, to which a coverglass is glued (element number 5), to which a dielectric microsphere (element number 7), typically a BTG microsphere of 10-40 μm diameter, is fixed via a thin layer of NOA 63 glue (element number 6); 8: sample to be imaged, which is mounted on a motorized microscope stage. An initial vertical scan of the stage (Zinit) is performed, during which the frame is translated with respect to the microscope objective by a frictional slide along the four rods, to find the optical image plane. c) Three-dimensional exploded view of the scanning system.

Fig. 2
Fig. 2

Image obtained after a single scan step and analysis of the super-resolution effect. a) Super-resolution imaging of the sample represented in the insets by positioning a 40 μm diameter BTG microsphere on top of it, as observed by a regular microscope objective (63x, oil immersion, NA = 1.4). The dotted red circle indicates the total field of view of the microsphere, as defined by its radius rsphere. The green dotted circle with radius rsup.res. marks the area where super-resolution imaging occurs. Inset top left: Schematic of a typical sample imaged in this study, consisting of 11 line patterns with a pitch of 0.28 µm and a line width of 0.14 µm. Inset bottom left: Sample imaged without the use of a microsphere. b) Three- and two-dimensional (inset) schematics of the imaging by a microsphere. The light waves in the center of the microsphere (green) carry the super-resolution information; rsup.res. implicitly defines the vertical distance h between sample and microsphere surface, below which super-resolution imaging is enabled. c) Samples with a pitch of 0.36 µm, 0.3 µm, 0.26 µm, respectively, and a line:interspace ratio 1:1, as imaged with the same microscope objective as used in a) without the use of a microsphere. Gray-scale analysis along the marked yellow line is showed on the right of every image, respectively. The 11 down pointing spikes corresponding to the 11 lines of the samples can only be seen on the top picture, and in the middle but in the bottom they are not resolved. Scale bar: 1 µm. d) Improved imaging of the same samples as in c) by using a microsphere on top. Scale bar: 1 µm.

Fig. 3
Fig. 3

Simulated electric fields of light propagation originating from a line pattern sample source placed at varying distances beneath a microsphere. a, b) A 40 µm BTG sphere is placed 1 nm and 1000 nm distance, respectively, above a 450 nm wide line pattern. Scale bar 10 µm. c, d) Zoom on the region near the sample source of a) and b), respectively. Modulation of the electrical field can be clearly observed in both cases. Scale bar 1 µm. e, f) Zoom of the same region as in c) and d), but taking a 150 nm wide line pattern. While the modulation can be still observed in e), it is not any more present in f), indicating that a too large propagation distance for the light in the medium provokes loss of nanometric feature information. Scale bar 1 µm.

Fig. 4
Fig. 4

Analysis of the simulation results. a) Example of the three measurement lines that were used for evaluation of the modulation patterns in the electric field simulations. Z0 was placed at the light source, Z1 at the distance Soffset/2 and Z2 at the distance Soffset × (1.5 ± ε), where ε was chosen such that the line is evaluating the first full wavefront within the microsphere. W = 260 nm, Soffset = 1000 nm. b) Plot of the electrical field simulated in a) along the three measurement lines. c) Summary of the modulations that were calculated for a range 100 nm < Soffset < 103 nm and 120 nm < W < 450 nm, based on the electrical field calculations, like the one shown in b).

Fig. 5
Fig. 5

Scanning and image reconstruction. a) Image obtained after a single scan step. Only the area in the green central square that fits into the circle with radius rsup.res. is used in the image reconstruction. b) Composed image obtained by stitching all square regions recorded during the scanning process. c) Same image as in B without indication of the tiles. d) Demonstration of the scanning super-resolution imaging of a larger sampling area, containing patterns with line width of 0.13 µm and width:interspacing ratio of 1:1.2 (left) and 1:1.4 (right), respectively. e) Same image as in d) without indication of the tiles. The zoom in the blue circle shows that 130 nm lines with 156 nm interspacing can be resolved indeed.

Fig. 6
Fig. 6

Scanning and image reconstruction of a Blu-ray disk surface. a) SEM picture of the surface of a Blu-ray disk with indication of the typical size of embossed features. b) Image obtained after a single scan step using a 26 μm size microsphere. For imaging, the 100 μm thick protective coating layer was removed from the disk. c) Image obtained after a single scan step using a 40 μm size microsphere. Only the area in the green central square will be used in the image reconstruction. d) (i and ii) Composed images obtained by stitching different square regions recorded during the scanning process.

Tables (2)

Tables Icon

Table 1 Performance evaluation of super-resolution imaging microscope systems. Lateral resolution (LR): ▪= (LR > 200 nm); ▪▪= (100 nm < LR < 200 nm); ▪▪▪= (LR < 100 nm). Size of imaged area (SA): ●= (SA < 102 μm2); ●●= (102 μm2 < SA < 108 μm2); ●●●= (SA > 108 μm2). Estimated cost of system (EC): $ = (EC < 50 000 USD); $$ = (50 000 USD< EC < 250 000 USD); $$$ = (EC > 250 000 USD). Estimated time of imaging (ET): + = (ET < 1 min); + + = (1 min < ET < 10 min); + + + = (ET > 10 min).

Tables Icon

Table 2 Electric field simulation results of multiple line patterns with different width (Width) and different sphere - sample distance (Soffset). Smaller Widths and bigger Soffset distances significantly can reduce the modulation. Scale bar: 10-6 m.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k 2 = k x 2 + k y 2 + k z 2 = ( 2π n medium λ ) 2
k x = 2π Δx , k y = 2π Δy , k z = 2π Δz
Δz= 1 1 Δ x 2 ( n medium λ ) 2
×(×E) k 0 2 ε r E=0

Metrics