Abstract

Space-variant polarization patterns present in the transverse mode of optical beams highlight disclination patterns of polarization about a singularity, often a C-point. These patterns are important for understanding rotational dislocations and for characterizing complex polarization patterns. Liquid-crystal devices known as q-plates have been used to produce two of the three types of disclination patterns in optical beams: lemons and stars. Here we report the production of the third type of disclination, which is asymmetric, known as the monstar. We do so with elliptically-symmetric q-plates. We present theory and measurements, and find excellent agreement between the two.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  2. V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–432 (1991).
  3. M. Dennis, K. O’Holleran, and M. Padgett, “Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
    [Crossref]
  4. G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011).
    [Crossref]
  5. E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89, 0318011–4 (2014).
    [Crossref]
  6. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
    [Crossref] [PubMed]
  7. G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
    [Crossref] [PubMed]
  8. M. V. Berry and J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A 10, 1809–1821 (1977).
    [Crossref]
  9. J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. R. Soc. Lond. A 389, 279–290 (1983).
    [Crossref]
  10. J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. ii. observation on the electric field,” Proc. R. Soc. Lond. A 414, 447–468 (1987).
    [Crossref]
  11. S. Tidwell, D. Ford, and W. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
    [Crossref] [PubMed]
  12. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [Crossref]
  13. M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1473–1477 (2003).
    [Crossref]
  14. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
    [Crossref]
  15. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Rotating vectorial vortices produced by space-variant sub wavelength gratings,” Opt. Lett. 30, 2933–2935 (2005).
    [Crossref] [PubMed]
  16. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
    [Crossref]
  17. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010).
    [Crossref] [PubMed]
  18. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by non-separable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51, 2925–2934 (2012).
    [Crossref] [PubMed]
  19. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
    [Crossref] [PubMed]
  20. V. Kumar and N. Viswanathan, “Topological structures in the poynting vector field: an experimental realization,” Opt. Lett. 38, 3886–3889 (2013).
    [Crossref] [PubMed]
  21. S. Vyas, Y. Kozawa, and S. Sato, “Polarization singularities in superposition of vector beams,” Opt. Express 21, 8972–8986 (2013).
    [Crossref] [PubMed]
  22. M. Beresna, M. Gecevicus, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
    [Crossref]
  23. I. Moreno, J. Davis, D. Cottrell, and R. Donoso, “Encoding high-order cylindrically polarized light beams,” Appl. Opt. 53, 5493–5501 (2014).
    [Crossref] [PubMed]
  24. E. Otte, C. Alpmann, and C. Denz, “Higher-order polarization singularities in tailored vector beams,” J. Opt. 18, 074012 (2016).
    [Crossref]
  25. F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21, 8815–8820 (2013).
    [Crossref] [PubMed]
  26. B. Piccirillo, S. Slussarenko, L. Marrucci, and E. Santamato, “The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501–554 (2013).
  27. M. R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt. Commun. 213, 201–221 (2002).
    [Crossref]
  28. I. Freund, “Möbius strips and twisted ribbons in intersecting Gauss Laguerre beams,” Opt. Commun. 284, 3816–3845 (2011).
    [Crossref]
  29. B. Khajavi and E. Galvez, “High-order disclinations in space-variant polarization,” J. Opt. 18, 084003 (2016).
    [Crossref]
  30. V. Kumar, G. M. Philip, and N. K. Viswanathan, “Formation and morphological transformation of polarization singularities: hunting the monstar,” J. Opt. 15, 044027 (2013).
    [Crossref]
  31. E. Galvez and B. Khajavi, “Monstar disclinations in the polarization of singular optical beams,” J. Opt. Soc. Am. A 34, 568>–575 (2017).
    [Crossref]
  32. F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
    [Crossref] [PubMed]
  33. M. R. Dennis, “Polarization singularity anisotropy: determining monstardom,” Opt. Lett. 33, 2572–2574 (2008).
    [Crossref] [PubMed]
  34. V. Vasil’ev and M. Soskin, “Topological and morphological transformations of developing singular paraxial vector light fields,” Opt. Commun. 281, 5527–5540 (2008).
    [Crossref]
  35. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
    [Crossref] [PubMed]
  36. B. Piccirillo, V. Kumar, L. Marrucci, and E. Santamato, “Pancharatnam-berry phase optical elements for generation and control of complex light: generalized superelliptical q-plates,” Proc. SPIE 9379, 937907 (2015).
    [Crossref]
  37. G. Ruane, G. Swartzlander, S. Slussarenko, L. Marrucci, and M. Dennis, “Nodal areas in coherent beams,” Optica 2, 147–150 (2015).
    [Crossref]
  38. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 1639051–4 (2006).
    [Crossref]
  39. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
    [Crossref]
  40. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22, 17207–17215 (2014).
    [Crossref] [PubMed]
  41. S. Delaney, M. M. Sánchez-López, I. Moreno, and J. A. Davis, “Arithmetic with q-plates,” Appl. Opt. 56, 596–600 (2017).
    [Crossref] [PubMed]
  42. J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003).
    [Crossref] [PubMed]

2017 (2)

2016 (2)

B. Khajavi and E. Galvez, “High-order disclinations in space-variant polarization,” J. Opt. 18, 084003 (2016).
[Crossref]

E. Otte, C. Alpmann, and C. Denz, “Higher-order polarization singularities in tailored vector beams,” J. Opt. 18, 074012 (2016).
[Crossref]

2015 (2)

B. Piccirillo, V. Kumar, L. Marrucci, and E. Santamato, “Pancharatnam-berry phase optical elements for generation and control of complex light: generalized superelliptical q-plates,” Proc. SPIE 9379, 937907 (2015).
[Crossref]

G. Ruane, G. Swartzlander, S. Slussarenko, L. Marrucci, and M. Dennis, “Nodal areas in coherent beams,” Optica 2, 147–150 (2015).
[Crossref]

2014 (4)

X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22, 17207–17215 (2014).
[Crossref] [PubMed]

I. Moreno, J. Davis, D. Cottrell, and R. Donoso, “Encoding high-order cylindrically polarized light beams,” Appl. Opt. 53, 5493–5501 (2014).
[Crossref] [PubMed]

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89, 0318011–4 (2014).
[Crossref]

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

2013 (5)

V. Kumar, G. M. Philip, and N. K. Viswanathan, “Formation and morphological transformation of polarization singularities: hunting the monstar,” J. Opt. 15, 044027 (2013).
[Crossref]

F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21, 8815–8820 (2013).
[Crossref] [PubMed]

B. Piccirillo, S. Slussarenko, L. Marrucci, and E. Santamato, “The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501–554 (2013).

V. Kumar and N. Viswanathan, “Topological structures in the poynting vector field: an experimental realization,” Opt. Lett. 38, 3886–3889 (2013).
[Crossref] [PubMed]

S. Vyas, Y. Kozawa, and S. Sato, “Polarization singularities in superposition of vector beams,” Opt. Express 21, 8972–8986 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (5)

M. Beresna, M. Gecevicus, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011).
[Crossref]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

I. Freund, “Möbius strips and twisted ribbons in intersecting Gauss Laguerre beams,” Opt. Commun. 284, 3816–3845 (2011).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

M. Dennis, K. O’Holleran, and M. Padgett, “Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

2008 (2)

M. R. Dennis, “Polarization singularity anisotropy: determining monstardom,” Opt. Lett. 33, 2572–2574 (2008).
[Crossref] [PubMed]

V. Vasil’ev and M. Soskin, “Topological and morphological transformations of developing singular paraxial vector light fields,” Opt. Commun. 281, 5527–5540 (2008).
[Crossref]

2007 (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 1639051–4 (2006).
[Crossref]

2005 (2)

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Rotating vectorial vortices produced by space-variant sub wavelength gratings,” Opt. Lett. 30, 2933–2935 (2005).
[Crossref] [PubMed]

F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[Crossref] [PubMed]

2004 (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
[Crossref]

2003 (2)

M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1473–1477 (2003).
[Crossref]

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003).
[Crossref] [PubMed]

2002 (1)

M. R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt. Commun. 213, 201–221 (2002).
[Crossref]

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

1992 (1)

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

1991 (1)

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–432 (1991).

1990 (1)

1987 (1)

J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. ii. observation on the electric field,” Proc. R. Soc. Lond. A 414, 447–468 (1987).
[Crossref]

1983 (1)

J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. R. Soc. Lond. A 389, 279–290 (1983).
[Crossref]

1977 (1)

M. V. Berry and J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A 10, 1809–1821 (1977).
[Crossref]

Alfano, R.

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011).
[Crossref]

Allen, L.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Alonso, M. A.

Alpmann, C.

E. Otte, C. Alpmann, and C. Denz, “Higher-order polarization singularities in tailored vector beams,” J. Opt. 18, 074012 (2016).
[Crossref]

Bazhenov, V. Y.

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–432 (1991).

Beckley, A. M.

Beijersbergen, M.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Beresna, M.

M. Beresna, M. Gecevicus, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Berry, M. V.

M. V. Berry and J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A 10, 1809–1821 (1977).
[Crossref]

Biener, G.

Brown, T. G.

Cardano, F.

Chen, S.

Chigrinov, V.

Cottrell, D.

D’Ambrosio, V.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Davis, J.

Davis, J. A.

de Lisio, C.

Delaney, S.

Denisenko, V.

M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1473–1477 (2003).
[Crossref]

Dennis, M.

G. Ruane, G. Swartzlander, S. Slussarenko, L. Marrucci, and M. Dennis, “Nodal areas in coherent beams,” Optica 2, 147–150 (2015).
[Crossref]

M. Dennis, K. O’Holleran, and M. Padgett, “Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Dennis, M. R.

M. R. Dennis, “Polarization singularity anisotropy: determining monstardom,” Opt. Lett. 33, 2572–2574 (2008).
[Crossref] [PubMed]

F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[Crossref] [PubMed]

M. R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt. Commun. 213, 201–221 (2002).
[Crossref]

Denz, C.

E. Otte, C. Alpmann, and C. Denz, “Higher-order polarization singularities in tailored vector beams,” J. Opt. 18, 074012 (2016).
[Crossref]

Donoso, R.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Du, T.

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Flossmann, F.

F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[Crossref] [PubMed]

Ford, D.

Freund, I.

I. Freund, “Möbius strips and twisted ribbons in intersecting Gauss Laguerre beams,” Opt. Commun. 284, 3816–3845 (2011).
[Crossref]

M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1473–1477 (2003).
[Crossref]

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Galvez, E.

E. Galvez and B. Khajavi, “Monstar disclinations in the polarization of singular optical beams,” J. Opt. Soc. Am. A 34, 568>–575 (2017).
[Crossref]

B. Khajavi and E. Galvez, “High-order disclinations in space-variant polarization,” J. Opt. 18, 084003 (2016).
[Crossref]

Galvez, E. J.

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89, 0318011–4 (2014).
[Crossref]

E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by non-separable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51, 2925–2934 (2012).
[Crossref] [PubMed]

Gecevicus, M.

M. Beresna, M. Gecevicus, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevicus, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gielis, J.

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003).
[Crossref] [PubMed]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Hajnal, J. V.

J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. ii. observation on the electric field,” Proc. R. Soc. Lond. A 414, 447–468 (1987).
[Crossref]

Hannay, J. H.

M. V. Berry and J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A 10, 1809–1821 (1977).
[Crossref]

Hasman, E.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Karimi, E.

F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21, 8815–8820 (2013).
[Crossref] [PubMed]

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
[Crossref] [PubMed]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Kazansky, P.

M. Beresna, M. Gecevicus, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Khadka, S.

Khajavi, B.

E. Galvez and B. Khajavi, “Monstar disclinations in the polarization of singular optical beams,” J. Opt. Soc. Am. A 34, 568>–575 (2017).
[Crossref]

B. Khajavi and E. Galvez, “High-order disclinations in space-variant polarization,” J. Opt. 18, 084003 (2016).
[Crossref]

Kimura, W.

Kleiner, V.

Kozawa, Y.

Kumar, V.

B. Piccirillo, V. Kumar, L. Marrucci, and E. Santamato, “Pancharatnam-berry phase optical elements for generation and control of complex light: generalized superelliptical q-plates,” Proc. SPIE 9379, 937907 (2015).
[Crossref]

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89, 0318011–4 (2014).
[Crossref]

V. Kumar, G. M. Philip, and N. K. Viswanathan, “Formation and morphological transformation of polarization singularities: hunting the monstar,” J. Opt. 15, 044027 (2013).
[Crossref]

V. Kumar and N. Viswanathan, “Topological structures in the poynting vector field: an experimental realization,” Opt. Lett. 38, 3886–3889 (2013).
[Crossref] [PubMed]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Li, Y.

Ling, X.

Liu, Y.

Luo, H.

Maier, M.

F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[Crossref] [PubMed]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 1639051–4 (2006).
[Crossref]

Marrucci, L.

G. Ruane, G. Swartzlander, S. Slussarenko, L. Marrucci, and M. Dennis, “Nodal areas in coherent beams,” Optica 2, 147–150 (2015).
[Crossref]

B. Piccirillo, V. Kumar, L. Marrucci, and E. Santamato, “Pancharatnam-berry phase optical elements for generation and control of complex light: generalized superelliptical q-plates,” Proc. SPIE 9379, 937907 (2015).
[Crossref]

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

B. Piccirillo, S. Slussarenko, L. Marrucci, and E. Santamato, “The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501–554 (2013).

F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21, 8815–8820 (2013).
[Crossref] [PubMed]

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
[Crossref] [PubMed]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
[Crossref] [PubMed]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 1639051–4 (2006).
[Crossref]

Martini, F. De

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Milione, G.

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011).
[Crossref]

Moreno, I.

Murauski, A.

Nagali, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Niv, A.

Nolan, D.

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011).
[Crossref]

Nomoto, S.

Nye, J. F.

J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. R. Soc. Lond. A 389, 279–290 (1983).
[Crossref]

O’Holleran, K.

M. Dennis, K. O’Holleran, and M. Padgett, “Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Otte, E.

E. Otte, C. Alpmann, and C. Denz, “Higher-order polarization singularities in tailored vector beams,” J. Opt. 18, 074012 (2016).
[Crossref]

Padgett, M.

M. Dennis, K. O’Holleran, and M. Padgett, “Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 1639051–4 (2006).
[Crossref]

Petrov, D.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
[Crossref]

Philip, G. M.

V. Kumar, G. M. Philip, and N. K. Viswanathan, “Formation and morphological transformation of polarization singularities: hunting the monstar,” J. Opt. 15, 044027 (2013).
[Crossref]

Piccirillo, B.

B. Piccirillo, V. Kumar, L. Marrucci, and E. Santamato, “Pancharatnam-berry phase optical elements for generation and control of complex light: generalized superelliptical q-plates,” Proc. SPIE 9379, 937907 (2015).
[Crossref]

B. Piccirillo, S. Slussarenko, L. Marrucci, and E. Santamato, “The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501–554 (2013).

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Rojec, B. L.

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89, 0318011–4 (2014).
[Crossref]

Ruane, G.

Sánchez-López, M. M.

Santamato, E.

B. Piccirillo, V. Kumar, L. Marrucci, and E. Santamato, “Pancharatnam-berry phase optical elements for generation and control of complex light: generalized superelliptical q-plates,” Proc. SPIE 9379, 937907 (2015).
[Crossref]

B. Piccirillo, S. Slussarenko, L. Marrucci, and E. Santamato, “The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501–554 (2013).

F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, “Generation and dynamics of optical beams with polarization singularities,” Opt. Express 21, 8815–8820 (2013).
[Crossref] [PubMed]

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
[Crossref] [PubMed]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
[Crossref] [PubMed]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Sato, S.

Schubert, W. H.

Schwarz, U. T.

F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[Crossref] [PubMed]

Sciarrino, F.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

Slussarenko, S.

G. Ruane, G. Swartzlander, S. Slussarenko, L. Marrucci, and M. Dennis, “Nodal areas in coherent beams,” Optica 2, 147–150 (2015).
[Crossref]

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

B. Piccirillo, S. Slussarenko, L. Marrucci, and E. Santamato, “The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501–554 (2013).

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
[Crossref] [PubMed]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
[Crossref] [PubMed]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

Soskin, M.

V. Vasil’ev and M. Soskin, “Topological and morphological transformations of developing singular paraxial vector light fields,” Opt. Commun. 281, 5527–5540 (2008).
[Crossref]

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–432 (1991).

Soskin, M. S.

M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1473–1477 (2003).
[Crossref]

Sponselli, A.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Spreeuw, R.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Swartzlander, G.

Sztul, H.

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011).
[Crossref]

Tidwell, S.

Vallone, G.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Vasil’ev, V.

V. Vasil’ev and M. Soskin, “Topological and morphological transformations of developing singular paraxial vector light fields,” Opt. Commun. 281, 5527–5540 (2008).
[Crossref]

Vasnetsov, M.

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–432 (1991).

Villoresi, P.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

Viswanathan, N.

Viswanathan, N. K.

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89, 0318011–4 (2014).
[Crossref]

V. Kumar, G. M. Philip, and N. K. Viswanathan, “Formation and morphological transformation of polarization singularities: hunting the monstar,” J. Opt. 15, 044027 (2013).
[Crossref]

Volpe, G.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
[Crossref]

Vyas, S.

Wen, S.

Woerdman, J.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Yi, X.

Zhang, Z.

Zhou, X.

Am. J. Bot. (1)

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevicus, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

J. Opt. (4)

E. Otte, C. Alpmann, and C. Denz, “Higher-order polarization singularities in tailored vector beams,” J. Opt. 18, 074012 (2016).
[Crossref]

B. Khajavi and E. Galvez, “High-order disclinations in space-variant polarization,” J. Opt. 18, 084003 (2016).
[Crossref]

V. Kumar, G. M. Philip, and N. K. Viswanathan, “Formation and morphological transformation of polarization singularities: hunting the monstar,” J. Opt. 15, 044027 (2013).
[Crossref]

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. A (1)

M. V. Berry and J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A 10, 1809–1821 (1977).
[Crossref]

JETP Lett. (1)

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–432 (1991).

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Opt. Commun. (5)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004).
[Crossref]

V. Vasil’ev and M. Soskin, “Topological and morphological transformations of developing singular paraxial vector light fields,” Opt. Commun. 281, 5527–5540 (2008).
[Crossref]

M. R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt. Commun. 213, 201–221 (2002).
[Crossref]

I. Freund, “Möbius strips and twisted ribbons in intersecting Gauss Laguerre beams,” Opt. Commun. 284, 3816–3845 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Optica (1)

Phys. Rev. A (2)

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89, 0318011–4 (2014).
[Crossref]

Phys. Rev. Lett. (5)

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[Crossref] [PubMed]

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref] [PubMed]

G. Milione, H. Sztul, D. Nolan, and R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 1639051–4 (2006).
[Crossref]

F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (2)

J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. R. Soc. Lond. A 389, 279–290 (1983).
[Crossref]

J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. ii. observation on the electric field,” Proc. R. Soc. Lond. A 414, 447–468 (1987).
[Crossref]

Proc. SPIE (1)

B. Piccirillo, V. Kumar, L. Marrucci, and E. Santamato, “Pancharatnam-berry phase optical elements for generation and control of complex light: generalized superelliptical q-plates,” Proc. SPIE 9379, 937907 (2015).
[Crossref]

Prog. Opt. (1)

M. Dennis, K. O’Holleran, and M. Padgett, “Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Riv. Nuovo Cimento (1)

B. Piccirillo, S. Slussarenko, L. Marrucci, and E. Santamato, “The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology,” Riv. Nuovo Cimento 36, 501–554 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Line patterns with a disclination. In (a) and (b) the patterns are circularly symmetric, with a = 1, but with disclination orders q = 1/2 and q = 1, respectively. In (c) the pattern is elliptically deformed with a = 4, and disclination order q = 1/2. When α = γ = 0 the director orientation for q-plates follow the lines in the patterns.

Fig. 2
Fig. 2

Schematic of the apparatus used to perform the experiments. Optical elements include optical beam from a HeNe laser launched through a single-mode fiber (SMF) and collimator lens (C), lenses for beam expanding and imaging (Li), q-plates (qi), quarter (Q) and half (H) waveplates, polarizers (P), filter(s) (F) and digital camera (DC).

Fig. 3
Fig. 3

Polarization of the light arising from a single elliptically-symmetric q-plate. When δ = π and the input polarization is linear horizontal, a q-plate with a = 4, and α = 18° produces a quasi radial pattern, modeled in (a) and measurement in the far field in (b). When the input polarization is vertical and phase-shifted to cancel the effect of the angle α, we obtained the pattern modeled in (c) and measured in (d). False color encodes the orientation of the polarization relative to the radial direction: θr = θϕ. Angles are in degrees.

Fig. 4
Fig. 4

Polarization of the light arising from a single elliptical q-plate with the input right circular polarization, δ = π/2 and a = 4. The modeled is shown in (a) and the measured one in (b). False color encodes the orientation of the polarization relative to the radial direction θr. (c) is a graph of θr for each measured point (blue dots), with solid line representing the average value. Angles are in degrees.

Fig. 5
Fig. 5

Polarization results obtained when using two q-plates (δ = π for both), with one of them circularly-symmetric to prepare a radial beam, and a second one elliptically-symmetric to generate a monstar pattern. The final pattern is modeled in (a), with red lines showing the radial lines. (b) shows a the imaging polarimetry of the measured pattern, with false color representing the polarization orientation relative to the radial direction θr. (c) is a graph of θr for a 200 × 200 subset of points about the center (blue dots), with solid line representing the average value. Angles are in degrees.

Tables (1)

Tables Icon

Table 1 Measured angles (in degrees) of radial lines and lines perpendicular to radial (for IC = 1/2) from the data of Figs. 4(c) and 5(c). The predicted values are also listed.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ψ = q tan 1 [ a tan ( ϕ + γ ) ] + α ,
ψ = q ϕ .
θ = 2 ψ θ in .
e ^ R = 1 2 ( e ^ ψ i e ^ ψ ) e i ψ
e ^ L = 1 2 ( e ^ ψ + i e ^ ψ ) e + i ψ ,
U ^ δ e ^ R = cos ( δ 2 ) e ^ R + i sin ( δ 2 ) e i 2 ψ e ^ L
U ^ δ e ^ L = cos ( δ 2 ) e ^ L + i sin ( δ 2 ) e i 2 ψ e ^ R
Δ φ = φ R φ L = 2 ψ π / 2 .
θ = 1 2 tan 1 ( a tan ϕ ) .
tan ϕ = 0 , ± 1 2 a .
θ = 2 ψ ϕ ,
θ r = θ ϕ ,

Metrics