Abstract

Blue-violet optical pulses of 9-kW peak power and 150-fs duration were obtained from a GaInN master oscillator power amplifier system using a nonlinear dispersion compensator. Seed pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode were stretched to 3-ps duration using a nonlinear dispersion compensator with a spatial light modulator that added second-order phase dispersion to an optimized nonlinear phase dispersion compensating the higher-order dispersion of the optical pulses. The stretched phase-optimized pulses were efficiently amplified to 3.0 nJ by a GaInN semiconductor optical amplifier. The amplified pulses were subsequently compressed using a linear pulse compressor, yielding 1.4-nJ femtosecond pulses. The obtained results show the highest peak-power ever reported for an electrically-pumped semiconductor gain medium.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor

Shunsuke Kono, Hideki Watanabe, Rintaro Koda, Noriyuki Fuutagawa, and Hironobu Narui
Opt. Express 23(25) 31766-31771 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
    [Crossref] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref] [PubMed]
  4. P. J. Delfyett, G. Alphonse, W. Ceislik, L. Florez, N. Stoffel, T. Gmitter, and N. Andreadakis, “200-fs optical pulse generation and intracavity pulse evolution in a hybrid mode-locked semiconductor diode-laser/amplifier system,” Opt. Lett. 17(9), 670–672 (1992).
    [Crossref] [PubMed]
  5. T. Schlauch, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Femtosecond passively modelocked diode laser with intracavity dispersion management,” Opt. Express 18(23), 24316–24324 (2010).
    [Crossref] [PubMed]
  6. J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
    [Crossref]
  7. B. Döpke, R. H. Pilny, C. Brenner, A. Klehr, G. Erbert, G. Tränkle, J. C. Balzer, and M. R. Hofmann, “Self-optimizing femtosecond semiconductor laser,” Opt. Express 23(8), 9710–9716 (2015).
    [Crossref] [PubMed]
  8. R. H. Pilny, B. Döpke, J. C. Balzer, C. Brenner, A. Klehr, A. Knigge, G. Tränkle, and M. R. Hofmann, “Femtosecond semiconductor laser system with resonator-internal dispersion adaptation,” Opt. Lett. 42(8), 1524–1527 (2017).
    [Crossref] [PubMed]
  9. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
    [Crossref]
  10. B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
    [Crossref]
  11. A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
    [Crossref]
  12. M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
    [Crossref]
  13. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
    [Crossref] [PubMed]
  14. C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
    [Crossref]
  15. S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
    [Crossref]
  16. K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
    [Crossref]
  17. R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
    [Crossref]
  18. S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
    [Crossref]
  19. R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
    [Crossref]
  20. S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
    [Crossref]
  21. S. Kono, R. Koda, H. Watanabe, N. Fuutagawa, and H. Narui, “Intensity correlation analysis on blue-violet femtosecond optical pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode,” Appl. Sci. 5(3), 555–565 (2015).
    [Crossref]
  22. S. Kono, H. Watanabe, R. Koda, N. Fuutagawa, and H. Narui, “140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor,” Opt. Express 23(25), 31766–31771 (2015).
    [Crossref] [PubMed]
  23. L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
    [Crossref] [PubMed]
  24. S. Kono, T. Oki, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Intensity autocorrelation measurement of 400nm picosecond optical pulses from a GaInN mode-locked semiconductor laser diode using surface second harmonic generation of β-BaB2O4 crystal,” Appl. Phys. Express 3(12), 122701 (2010).
    [Crossref]
  25. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
    [Crossref]

2017 (2)

R. H. Pilny, B. Döpke, J. C. Balzer, C. Brenner, A. Klehr, A. Knigge, G. Tränkle, and M. R. Hofmann, “Femtosecond semiconductor laser system with resonator-internal dispersion adaptation,” Opt. Lett. 42(8), 1524–1527 (2017).
[Crossref] [PubMed]

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

2016 (3)

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
[Crossref]

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

2015 (6)

B. Döpke, R. H. Pilny, C. Brenner, A. Klehr, G. Erbert, G. Tränkle, J. C. Balzer, and M. R. Hofmann, “Self-optimizing femtosecond semiconductor laser,” Opt. Express 23(8), 9710–9716 (2015).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

S. Kono, R. Koda, H. Watanabe, N. Fuutagawa, and H. Narui, “Intensity correlation analysis on blue-violet femtosecond optical pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode,” Appl. Sci. 5(3), 555–565 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, N. Fuutagawa, and H. Narui, “140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor,” Opt. Express 23(25), 31766–31771 (2015).
[Crossref] [PubMed]

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

2013 (2)

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[Crossref] [PubMed]

J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
[Crossref]

2012 (1)

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

2011 (1)

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

2010 (4)

S. Kono, T. Oki, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Intensity autocorrelation measurement of 400nm picosecond optical pulses from a GaInN mode-locked semiconductor laser diode using surface second harmonic generation of β-BaB2O4 crystal,” Appl. Phys. Express 3(12), 122701 (2010).
[Crossref]

T. Schlauch, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Femtosecond passively modelocked diode laser with intracavity dispersion management,” Opt. Express 18(23), 24316–24324 (2010).
[Crossref] [PubMed]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

2006 (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

1999 (1)

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

1997 (1)

1992 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[Crossref] [PubMed]

Addamane, S.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Akagi, T.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Akasaki, I.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Akatsuka, Y.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Alphonse, G.

Andreadakis, N.

Baker, C. W.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Balakrishnan, G.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Balzer, J. C.

Beere, H. E.

Borri, P.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

Brenner, C.

Ceislik, W.

Delfyett, P. J.

DeMagistris, M.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Döpke, B.

Erbert, G.

Fedorova, K. A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Florez, L.

Fujita, G.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Fuutagawa, N.

S. Kono, R. Koda, H. Watanabe, N. Fuutagawa, and H. Narui, “Intensity correlation analysis on blue-violet femtosecond optical pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode,” Appl. Sci. 5(3), 555–565 (2015).
[Crossref]

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, N. Fuutagawa, and H. Narui, “140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor,” Opt. Express 23(25), 31766–31771 (2015).
[Crossref] [PubMed]

Gaafar, M. A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Gini, E.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Gmitter, T.

Golling, M.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Hamaguchi, T.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Hanzawa, Y.

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

Heinen, B.

Hofmann, M. R.

Huxlin, K. R.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Hvam, J. M.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

Ikeda, M.

S. Kono, T. Oki, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Intensity autocorrelation measurement of 400nm picosecond optical pulses from a GaInN mode-locked semiconductor laser diode using surface second harmonic generation of β-BaB2O4 crystal,” Appl. Phys. Express 3(12), 122701 (2010).
[Crossref]

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Ikeyama, K.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Iwamura, T.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Iwaya, M.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Izumi, S.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Jones, R. J.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Kamiyama, S.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Kawata, S.

Keller, U.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

Klehr, A.

Klenner, A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Knigge, A.

Knox, W. H.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Koch, M.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Koch, S. W.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Koda, R.

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

S. Kono, R. Koda, H. Watanabe, N. Fuutagawa, and H. Narui, “Intensity correlation analysis on blue-violet femtosecond optical pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode,” Appl. Sci. 5(3), 555–565 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, N. Fuutagawa, and H. Narui, “140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor,” Opt. Express 23(25), 31766–31771 (2015).
[Crossref] [PubMed]

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Koide, N.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Kono, S.

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, N. Fuutagawa, and H. Narui, “140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor,” Opt. Express 23(25), 31766–31771 (2015).
[Crossref] [PubMed]

S. Kono, R. Koda, H. Watanabe, N. Fuutagawa, and H. Narui, “Intensity correlation analysis on blue-violet femtosecond optical pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode,” Appl. Sci. 5(3), 555–565 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

S. Kono, T. Oki, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Intensity autocorrelation measurement of 400nm picosecond optical pulses from a GaInN mode-locked semiconductor laser diode using surface second harmonic generation of β-BaB2O4 crystal,” Appl. Phys. Express 3(12), 122701 (2010).
[Crossref]

Kozuka, Y.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Kunert, B.

Kuramoto, M.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

S. Kono, T. Oki, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Intensity autocorrelation measurement of 400nm picosecond optical pulses from a GaInN mode-locked semiconductor laser diode using surface second harmonic generation of β-BaB2O4 crystal,” Appl. Phys. Express 3(12), 122701 (2010).
[Crossref]

Langbein, W.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

Laurain, A.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Link, S. M.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Mangold, M.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Martelli, F.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

Maruo, S.

Matsui, K.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Mayer, A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Mecozzi, A.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

Miura, T.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Miyajima, T.

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Moloney, J. V.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Mørk, J.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

Murayama, M.

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

Nakajima, H.

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

Nakamura, O.

Narui, H.

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

S. Kono, R. Koda, H. Watanabe, N. Fuutagawa, and H. Narui, “Intensity correlation analysis on blue-violet femtosecond optical pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode,” Appl. Sci. 5(3), 555–565 (2015).
[Crossref]

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, N. Fuutagawa, and H. Narui, “140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor,” Opt. Express 23(25), 31766–31771 (2015).
[Crossref] [PubMed]

Oki, T.

S. Kono, T. Oki, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Intensity autocorrelation measurement of 400nm picosecond optical pulses from a GaInN mode-locked semiconductor laser diode using surface second harmonic generation of β-BaB2O4 crystal,” Appl. Phys. Express 3(12), 122701 (2010).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[Crossref] [PubMed]

Pilny, R. H.

Rafailov, E. U.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Rahimi-Iman, A.

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
[Crossref]

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[Crossref] [PubMed]

Ritchie, D. A.

Ruiz-Perez, A.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Scaffetti, S.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

Scheller, M.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Schlauch, T.

J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
[Crossref]

T. Schlauch, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Femtosecond passively modelocked diode laser with intracavity dispersion management,” Opt. Express 18(23), 24316–24324 (2010).
[Crossref] [PubMed]

Shiozaki, M.

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

Stoffel, N.

Stolz, W.

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sugawara, N.

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

Takemoto, Y.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Takeuchi, T.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Takiguchi, Y.

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

Tashiro, S.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Tilma, B. W.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Tränkle, G.

Tropper, A. C.

Uchiyama, H.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Ueda, D.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Waldburger, D.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Wang, N.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Watanabe, H.

S. Kono, H. Watanabe, R. Koda, N. Fuutagawa, and H. Narui, “140-fs duration and 60-W peak power blue-violet optical pulses generated by a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compressor,” Opt. Express 23(25), 31766–31771 (2015).
[Crossref] [PubMed]

S. Kono, R. Koda, H. Watanabe, N. Fuutagawa, and H. Narui, “Intensity correlation analysis on blue-violet femtosecond optical pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode,” Appl. Sci. 5(3), 555–565 (2015).
[Crossref]

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wilcox, K. G.

Xu, L.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Yamatsu, H.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Yokoyama, H.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

S. Kono, T. Oki, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Intensity autocorrelation measurement of 400nm picosecond optical pulses from a GaInN mode-locked semiconductor laser diode using surface second harmonic generation of β-BaB2O4 crystal,” Appl. Phys. Express 3(12), 122701 (2010).
[Crossref]

Yoshida, S.

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

Yun, K.

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

Zaugg, C. A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Adv. Opt. Photonics (1)

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Appl. Phys. Express (4)

S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Appl. Phys. Express 8(6), 062702 (2015).
[Crossref]

K. Ikeyama, Y. Kozuka, K. Matsui, S. Yoshida, T. Akagi, Y. Akatsuka, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors,” Appl. Phys. Express 9(10), 102101 (2016).
[Crossref]

S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, “Volumetric optical recording using a 400nm All-semiconductor picosecond laser,” Appl. Phys. Express 3(10), 102501 (2010).
[Crossref]

S. Kono, T. Oki, M. Kuramoto, M. Ikeda, and H. Yokoyama, “Intensity autocorrelation measurement of 400nm picosecond optical pulses from a GaInN mode-locked semiconductor laser diode using surface second harmonic generation of β-BaB2O4 crystal,” Appl. Phys. Express 3(12), 122701 (2010).
[Crossref]

Appl. Phys. Lett. (3)

R. Koda, Y. Takiguchi, S. Kono, H. Watanabe, Y. Hanzawa, H. Nakajima, M. Shiozaki, N. Sugawara, M. Kuramoto, and H. Narui, “Generation of a 2.2 nJ picosecond optical pulse with blue-violet wavelength using a GaInN master oscillator power amplifier,” Appl. Phys. Lett. 107(4), 041116 (2015).
[Crossref]

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Appl. Sci. (1)

S. Kono, R. Koda, H. Watanabe, N. Fuutagawa, and H. Narui, “Intensity correlation analysis on blue-violet femtosecond optical pulses from a dispersion-compensated GaInN mode-locked semiconductor laser diode,” Appl. Sci. 5(3), 555–565 (2015).
[Crossref]

Electron. Lett. (1)

J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. W. Baker, M. Scheller, A. Laurain, A. Ruiz-Perez, W. Stolz, S. Addamane, G. Balakrishnan, S. W. Koch, R. J. Jones, and J. V. Moloney, “Multi-angle VECSEL cavities for dispersion control and peak-power scaling,” IEEE Photonics Technol. Lett. 29(3), 326–329 (2017).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

J. Opt. (1)

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
[Crossref]

Light Sci. Appl. (1)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Opt. Commun. (1)

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulse width for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164(1–3), 51–55 (1999).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

Science (2)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245(4920), 843–845 (1989).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of the optical setup of the GaInN MOPA system. (a) Dispersion-compensated GaInN MLLD, (b) Nonlinear dispersion compensator using a SLM, (c) GaInN SOA, and (d) Grating pulse compressor. M: Mirror, L: Lens, CL: Cylindrical lens, G: Grating, SLM: Spatial light modulator, I: Optical isolator, W: Half-wave plate.

Fig. 2
Fig. 2

(a) Intensity autocorrelation traces measured directly after the MLLD (gray trace) and after the nonlinear dispersion compensator with the optimized nonlinear phase dispersion (black trace). Inset: Intensity autocorrelation trace of the compressed MLLD output in an expanded scale (solid trace) and a sech2 function (dotted trace). (b) Optical spectrum of the MLLD output (solid trace) and the nonlinear GVD given by the nonlinear dispersion compensator to compress the MLLD output (dashed trace, referred to the right axis).

Fig. 3
Fig. 3

(a) Average SOA output power as a function of the GVD shift to the optimized nonlinear GVD. (b) FWHM pulse durations of the seed pulses (filled black squares, referred to the left axis) and the amplified SOA output (filled red squares, referred to the left axis) as a function of the GVD shift to the optimized nonlinear GVD. FWHM pulse duration of the compressed SOA output (open red circles, referred to the right axis) as a function of the GVD shift. Inset: Intensity autocorrelation trace of the compressed SOA output at a GVD shift of 0.0 ps2.

Fig. 4
Fig. 4

Optical spectra of the SOA output at various GVD shifts to the optimized nonlinear GVD.

Fig. 5
Fig. 5

(a) Optical spectra measured at a GVD shift of −0.20 ps2: SOA output (solid red trace), ASE (solid blue trace), ASE multiplied by a factor to estimate ASE portion (dashed blue trace), and MLLD (dashed gray trace). All spectra except that of MLLD are plotted on the same vertical scale. (b) Intensity autocorrelation traces measured at a GVD shift of −0.20 ps2: Input MLLD pulses (solid gray trace), SOA output pulses before compression (dashed red trace), and SOA output pulses after compression (solid red trace). Inset: The SOA output pulses after compression plotted using an expanded time scale. Dotted black trace shows a sech2 function.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pulse energy= Average power d × 1 r ×p

Metrics