Abstract

The ultrafast laser inscription technique has been used to fabricate channel waveguides in Tm3+-doped Lu2O3 ceramic gain medium for the first time to our knowledge. Laser operation has been demonstrated using a monolithic microchip cavity with a continuous-wave Ti:sapphire pump source at 796 nm. The maximum output power achieved from the Tm:Lu2O3 waveguide laser was 81 mW at 1942 nm. A maximum slope efficiency of 9.5% was measured with the laser thresholds observed to be in the range of 50-200 mW of absorbed pump power. Propagation losses for this waveguide structure are calculated to be 0.7 dB⋅cm−1 ± 0.3 dB⋅cm−1 at the lasing wavelength.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev
Opt. Mater. Express 2(2) 183-189 (2012)

Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics

Wei Jing, Pavel Loiko, Josep Maria Serres, Yicheng Wang, Elena Vilejshikova, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Hui Huang, Valentin Petrov, and Xavier Mateos
Opt. Mater. Express 7(11) 4192-4202 (2017)

2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser

Esa J. Saarinen, Elena Vasileva, Oleg Antipov, Jussi-Pekka Penttinen, Miki Tavast, Tomi Leinonen, and Oleg G. Okhotnikov
Opt. Express 21(20) 23844-23850 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  3. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  4. F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. Brown, “Lasing action at around 1.9 μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36(9), 1566–1568 (2011).
    [Crossref] [PubMed]
  5. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [Crossref] [PubMed]
  6. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
    [Crossref] [PubMed]
  7. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
    [Crossref] [PubMed]
  8. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
    [Crossref] [PubMed]
  9. C. Kränkel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3- μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
    [Crossref]
  10. S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
    [Crossref]
  11. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
    [Crossref] [PubMed]
  12. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
    [Crossref] [PubMed]
  13. E. V. Ivakin, I. G. Kisialiou, and O. L. Antipov, “Laser ceramics Tm:Lu2O3. Thermal, thermo-optical, and spectroscopic properties,” Opt. Mater. 35(3), 499–503 (2013).
    [Crossref]
  14. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
    [Crossref]
  15. A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
    [Crossref]
  16. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
    [Crossref]
  17. D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
    [Crossref]
  18. R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
    [Crossref]
  19. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [Crossref]
  20. S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
    [Crossref]
  21. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  22. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
    [Crossref] [PubMed]

2016 (1)

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

2015 (2)

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

C. Kränkel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3- μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

2014 (2)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

2013 (2)

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
[Crossref] [PubMed]

E. V. Ivakin, I. G. Kisialiou, and O. L. Antipov, “Laser ceramics Tm:Lu2O3. Thermal, thermo-optical, and spectroscopic properties,” Opt. Mater. 35(3), 499–503 (2013).
[Crossref]

2012 (5)

2011 (3)

2009 (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2006 (2)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

2004 (1)

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

1999 (1)

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Ams, M.

Antipov, O. L.

Aung, Y. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

Baesso, M. L.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

Bain, F. M.

Beecher, S.

Beecher, S. J.

Bento, A. C.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

Berry, P. A.

Brown, C. T.

Brown, C. T. A.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Brown, G.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Catunda, T.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

Choudhary, A.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Demetriou, G.

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

Eason, R. W.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Ebendorff-Heidepriem, H.

Feng, C.

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

Feng, X.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Ferrari, A. C.

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

Fuerbach, A.

Fuhrberg, P.

Fusari, F.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gross, S.

Hernandes, A. C.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

Huber, G.

Ikesue, A.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

Ivakin, E. V.

E. V. Ivakin, I. G. Kisialiou, and O. L. Antipov, “Laser ceramics Tm:Lu2O3. Thermal, thermo-optical, and spectroscopic properties,” Opt. Mater. 35(3), 499–503 (2013).
[Crossref]

Jaque, D.

Jha, A.

Jose, G.

Juodkazis, S.

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Kannan, P.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Kar, A. K.

Kisialiou, I. G.

E. V. Ivakin, I. G. Kisialiou, and O. L. Antipov, “Laser ceramics Tm:Lu2O3. Thermal, thermo-optical, and spectroscopic properties,” Opt. Mater. 35(3), 499–503 (2013).
[Crossref]

Koopmann, P.

Kränkel, C.

C. Kränkel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3- μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kuan, K.

Lagatsky, A. A.

Lamrini, S.

Lancaster, D. G.

Lebullenger, R.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

Lima, S. M.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
[Crossref] [PubMed]

Mackenzie, J. I.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Maksimov, I.

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

Mary, R.

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Messing, G. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Miranda, L. C. M.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

Misawa, H.

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

Monro, T. M.

Novikov, A. A.

Ohara, S.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Petermann, K.

Popa, D.

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

Psaila, N. D.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Ren, Y.

Ródenas, A.

Schepler, K. L.

Scholle, K.

Shepherd, D. P.

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

Sibbett, W.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Taira, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Thomson, R. R.

Torrisi, F.

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Withford, M. J.

Yingying, R.

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

Yoshida, K.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Zakharov, N. G.

Zinoviev, A. P.

Annu. Rev. Mater. Res. (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Appl. Phys. Lett. (1)

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picosecond pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

D. P. Shepherd, A. Choudhary, A. A. Lagatsky, P. Kannan, S. J. Beecher, R. W. Eason, J. I. Mackenzie, X. Feng, W. Sibbett, and C. T. A. Brown, “Ultrafast High-Repetition-Rate Waveguide Lasers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 16–24 (2016).
[Crossref]

R. Yingying, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, C. Feng, and A. K. Kar, “7.8-GHz Graphene-Based Monolithic Waveguide Laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 395–400 (2015).
[Crossref]

C. Kränkel, “Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3- μm Spectral Range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue and Y. L. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[Crossref]

Laser Photonics Rev. (2)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
[Crossref] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett. 36(6), 948–950 (2011).
[Crossref] [PubMed]

F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. Brown, “Lasing action at around 1.9 μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36(9), 1566–1568 (2011).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
[Crossref] [PubMed]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett. 38(13), 2194–2196 (2013).
[Crossref] [PubMed]

Opt. Mater. (1)

E. V. Ivakin, I. G. Kisialiou, and O. L. Antipov, “Laser ceramics Tm:Lu2O3. Thermal, thermo-optical, and spectroscopic properties,” Opt. Mater. 35(3), 499–503 (2013).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60(22), 15173–15178 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental setup for initial waveguide characterization. PC, three paddle fiber polarization controller; L1 and L2, AR-coated aspheric lenses; M1 and M2, silver mirrors; WUT, waveguide under test; L3, × 20 objective; VA, reflective variable ND filter; BD, beam dump. Blue dotted box signifies components mounted on waveguide alignment workstation. (b) and (c) Mode images for Type I and II guiding in Tm:Lu2O3 waveguides with 20 μm track separations, respectively. Red dashed ellipses indicate the area of the inscribed tracks. A 10 μm scale bar is included.
Fig. 2
Fig. 2 Waveguide laser experimental setup. HWP, half-wave plate; PBS, polarizing beam splitter; BD, beam dump; M1 and M2, gold mirrors; OI, optical isolator; PS, periscope; L1 and L2, AR-coated aspheric lenses; PM, pump mirror; WUT, waveguide under test; OC, output coupler; VA, reflective variable ND filter; PF, optical filter. Blue dotted box signifies components mounted on waveguide alignment workstation. Green dotted box signifies power meter or detector positions.
Fig. 3
Fig. 3 (a) Input-output power characteristics of the Tm:Lu2O3 waveguide laser with different output couplers at the maximum output power experimental conditions. The inset shows the laser spectrum. (b) Experimental data and a linear fit of the inverse measured slope efficiencies against inverse output coupling.
Fig. 4
Fig. 4 (a) Microscope image of the waveguide used in the laser experiments. (b) and (c) show the pump (796 nm) and the laser (1942 nm) mode images, respectively. 10 μm scale bars are included. The green dotted circle shows the unmodified guiding region. Red dashed ellipses indicate the area of the inscribed tracks. (d) and (e) are the Gaussian fits to slices through the laser mode image in x and y directions, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f cr = D th d 2
1 η s = 1 η 0 ( 1+ 2 γ i γ oc ) 
γ i =ln(1L)
γ oc =ln(1 T oc )

Metrics