Abstract

Dielectric multilayers, when properly optimized, have been shown to sustain giant optical field enhancement directly linked to the imaginary index of the materials. Such giant optical field is of great interests to increase tremendously the sensitivity of optoelectronic systems. Unfortunately, this ultra-sensitive system is also highly depending on the illumination conditions. We discuss here the effect of the angular divergence and the spectral bandwidth of the incident laser beam on the absorption and field enhancement. In this study, we clearly show that giant optical field enhancements, up to several decades, may be achievable when the incident conditions are down few μrad and pm in term of angular and spectral bandwidths respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering losses in multidielectric structures designed for giant optical field enhancement

Aude L. Lereu, Myriam Zerrad, Césaire Ndiaye, Fabien Lemarchand, and Claude Amra
Appl. Opt. 53(4) A412-A416 (2014)

Giant and tunable electric field enhancement in the terahertz regime

Xiaoyuan Lu, Rengang Wan, Guoxi Wang, Tongyi Zhang, and Wenfu Zhang
Opt. Express 22(22) 27001-27006 (2014)

Giant distributed optical-field enhancements from Mie-resonant lattice surface modes in dielectric metasurfaces

Xiaowei Wang, Leonard C. Kogos, and Roberto Paiella
OSA Continuum 2(1) 32-42 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–106 (1978).
    [Crossref]
  2. W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–372 (1978).
    [Crossref]
  3. P. Yeh, A. Yariv, and C-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  4. A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67(4), 438–447 (1977).
    [Crossref]
  5. N. Ashby and S. C. Miller, “Interference theory of reflection from multilayered media,” J. Opt. Soc. Am. 67(4), 448–453 (1977).
    [Crossref]
  6. E. R. Mendieta and P. Halevi, “Electromagnetic surface modes of a dielectric superlattice: the supercell method,” J. Opt. Soc. Am. B 14(2), 370–381 (1997).
    [Crossref]
  7. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
    [Crossref]
  8. K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18, 582–588 (2003).
    [Crossref]
  9. J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006).
    [Crossref]
  10. F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
    [Crossref] [PubMed]
  11. L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20(14), 15734–15751 (2012).
    [Crossref] [PubMed]
  12. R. C. Nesnidal and T. G. Walker, “Multilayer dielectric structure for enhancement of evanescent waves,” Appl. Opt. 35(13), 2226–2229 (1996).
    [Crossref] [PubMed]
  13. R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
    [Crossref] [PubMed]
  14. C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
    [Crossref] [PubMed]
  15. C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 8168–8174, (2011).
  16. A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
    [Crossref] [PubMed]
  17. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  18. M. Tsang and D. Psaltis, “Reflectionless evanescent wave amplification via two dielectric planar waveguides,” Opt. Lett. 31(18), 2741–2743 (2006).
    [Crossref] [PubMed]
  19. R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
    [Crossref]
  20. G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
    [Crossref]
  21. P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
    [Crossref]
  22. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20(8), 940–942 (1995).
    [Crossref] [PubMed]
  23. Jeun Kee Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
    [Crossref]
  24. E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
    [Crossref] [PubMed]
  25. C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
    [Crossref]
  26. A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
    [Crossref]
  27. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuat. A 159(1), 24–32 (2010).
    [Crossref]
  28. A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
    [Crossref]
  29. Wan YuHang, Zheng Zheng, Shi XiaoGang, Bian YuSheng, and Liu JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China Tech. Sci. 56(3), 567–572 (2013).
    [Crossref]
  30. R. Badugu, E. Descrovi, and J. R. Lakowic, “Radiative Decay Engineering 7: Tamm State-Coupled Emission Using a Hybrid Plasmonic-Photonic Structure,” Anal.l Biochem. 445, 1–13 (2014).
    [Crossref]
  31. Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
    [Crossref]
  32. W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuat. B 71(1–2), 42–46 (2000).
    [Crossref]
  33. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
    [Crossref]
  34. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
    [Crossref]
  35. S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
    [Crossref]
  36. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
    [Crossref] [PubMed]
  37. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
    [Crossref] [PubMed]
  38. M. Lequime and C. Amra, De l’Optique Electromagnétique à l’Interférométrie, (EDP Sciences, 2013).

2016 (1)

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

2014 (3)

R. Badugu, E. Descrovi, and J. R. Lakowic, “Radiative Decay Engineering 7: Tamm State-Coupled Emission Using a Hybrid Plasmonic-Photonic Structure,” Anal.l Biochem. 445, 1–13 (2014).
[Crossref]

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref] [PubMed]

2013 (6)

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

Wan YuHang, Zheng Zheng, Shi XiaoGang, Bian YuSheng, and Liu JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China Tech. Sci. 56(3), 567–572 (2013).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[Crossref]

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

2012 (3)

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20(14), 15734–15751 (2012).
[Crossref] [PubMed]

2011 (3)

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref] [PubMed]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 8168–8174, (2011).

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

2010 (3)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuat. A 159(1), 24–32 (2010).
[Crossref]

Jeun Kee Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
[Crossref]

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref] [PubMed]

2008 (1)

2006 (2)

M. Tsang and D. Psaltis, “Reflectionless evanescent wave amplification via two dielectric planar waveguides,” Opt. Lett. 31(18), 2741–2743 (2006).
[Crossref] [PubMed]

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006).
[Crossref]

2003 (1)

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18, 582–588 (2003).
[Crossref]

2000 (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuat. B 71(1–2), 42–46 (2000).
[Crossref]

1999 (1)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

1997 (2)

E. R. Mendieta and P. Halevi, “Electromagnetic surface modes of a dielectric superlattice: the supercell method,” J. Opt. Soc. Am. B 14(2), 370–381 (1997).
[Crossref]

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
[Crossref]

1996 (2)

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

R. C. Nesnidal and T. G. Walker, “Multilayer dielectric structure for enhancement of evanescent waves,” Appl. Opt. 35(13), 2226–2229 (1996).
[Crossref] [PubMed]

1995 (1)

1994 (1)

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

1978 (2)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–106 (1978).
[Crossref]

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–372 (1978).
[Crossref]

1977 (3)

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuat. A 159(1), 24–32 (2010).
[Crossref]

Alvaro, M.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Amra, C.

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref] [PubMed]

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 8168–8174, (2011).

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref] [PubMed]

M. Lequime and C. Amra, De l’Optique Electromagnétique à l’Interférométrie, (EDP Sciences, 2013).

Ashby, N.

Aspect, A.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

Ausserré, D.

Badugu, R.

R. Badugu, E. Descrovi, and J. R. Lakowic, “Radiative Decay Engineering 7: Tamm State-Coupled Emission Using a Hybrid Plasmonic-Photonic Structure,” Anal.l Biochem. 445, 1–13 (2014).
[Crossref]

Bajoni, D.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Ballarini, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

Boyd, R. D.

Britten, J. A.

Bussolino, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Challener, W. A.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuat. B 71(1–2), 42–46 (2000).
[Crossref]

Chen, P. C.

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–372 (1978).
[Crossref]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–106 (1978).
[Crossref]

Dacarro, G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Danz, N.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

de Fornel, F.

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

Decker, D.

Delfan, A.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Descrovi, E.

R. Badugu, E. Descrovi, and J. R. Lakowic, “Radiative Decay Engineering 7: Tamm State-Coupled Emission Using a Hybrid Plasmonic-Photonic Structure,” Anal.l Biochem. 445, 1–13 (2014).
[Crossref]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[Crossref] [PubMed]

Descrovic, E.

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

Digregorio, G.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

Dominici, L.

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[Crossref] [PubMed]

Dostalek, J.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Dumas, Ph.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[Crossref]

Edwards, J. D.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuat. B 71(1–2), 42–46 (2000).
[Crossref]

Enrico, E.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

Frascella, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

Galli, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Gan, X. S.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
[Crossref]

Gao, L.

Garcia de Abajo, F. J.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref] [PubMed]

Giorgis, F.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[Crossref] [PubMed]

Gonzalez, M-U.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref] [PubMed]

Gu, M.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
[Crossref]

Guizzetti, G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Halevi, P.

Hayashi, S.

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

Herzig, H-P.

Hong, C-S.

Inouye, Y.

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

Ishitobi, H.

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

JianSheng, Liu

Wan YuHang, Zheng Zheng, Shi XiaoGang, Bian YuSheng, and Liu JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China Tech. Sci. 56(3), 567–572 (2013).
[Crossref]

Jonas, U.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Kaiser, R.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

Kawata, S.

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

Ke, P. C.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
[Crossref]

Kee Chua, Jeun

Jeun Kee Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
[Crossref]

Khorasani, S.

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18, 582–588 (2003).
[Crossref]

Knoll, W.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Labeyrie, G.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

Lakowic, J. R.

R. Badugu, E. Descrovi, and J. R. Lakowic, “Radiative Decay Engineering 7: Tamm State-Coupled Emission Using a Hybrid Plasmonic-Photonic Structure,” Anal.l Biochem. 445, 1–13 (2014).
[Crossref]

Landragin, A.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

Leipold, D.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

Lemarchand, F.

Leo, N. De

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

Lequime, M.

Lereu, A. L.

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref] [PubMed]

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[Crossref]

Lévy, Y.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

Liscidini, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Maiti, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Mandracci, P.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

Martorell, J.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006).
[Crossref]

Mateescu, A.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

McGowan, R. W.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuat. B 71(1–2), 42–46 (2000).
[Crossref]

Mehrany, K.

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18, 582–588 (2003).
[Crossref]

Mendieta, E. R.

Michelotti, F.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008).
[Crossref] [PubMed]

Miller, S. C.

Mlynek, J.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

Moi, V.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Morozov, G. V.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006).
[Crossref]

Munzert, P.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

Murukeshan, V. M.

Jeun Kee Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
[Crossref]

Musi, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

Mysore, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Nakagawa, W.

Napione, L.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Ndiaye, C.

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref] [PubMed]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 8168–8174, (2011).

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref] [PubMed]

Nesnidal, R. C.

Nesterenko, D. V.

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

Ng, W.

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–372 (1978).
[Crossref]

Paeder, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

Patrini, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Perry, M. D.

Petit, M.

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

Pirotta, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Psaltis, D.

Quidant, R.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref] [PubMed]

Rahmouni, A.

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

Rashidian, B.

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18, 582–588 (2003).
[Crossref]

Refki, S.

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

Renger, J.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref] [PubMed]

Ricciardi, S.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Rivolo, P.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

Robertson, W. M.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

Roche, R.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[Crossref]

Sainidou, R.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref] [PubMed]

Schilders, S.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
[Crossref]

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

Seifert, W.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

Sekkat, Z.

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

Sfez, T.

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuat. A 159(1), 24–32 (2010).
[Crossref]

Shannon, C.

Shore, B. W.

Shults, E.

Sinibaldi, A.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

Sipe, J. E.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Skorjanec, J.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuat. B 71(1–2), 42–46 (2000).
[Crossref]

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

Sprung, D. W. L.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006).
[Crossref]

Szajman, J.

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
[Crossref]

Teperik, T. V.

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref] [PubMed]

Toma, K.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Toma, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Tsang, M.

Vansteenkiste, N.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

Von Zanthier, J.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

Walker, G. C.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Walker, T. G.

Westbrook, C.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

XiaoGang, Shi

Wan YuHang, Zheng Zheng, Shi XiaoGang, Bian YuSheng, and Liu JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China Tech. Sci. 56(3), 567–572 (2013).
[Crossref]

Xu, X. G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Yang, Z.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuat. B 71(1–2), 42–46 (2000).
[Crossref]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–106 (1978).
[Crossref]

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–372 (1978).
[Crossref]

P. Yeh, A. Yariv, and C-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
[Crossref]

A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67(4), 438–447 (1977).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–106 (1978).
[Crossref]

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–372 (1978).
[Crossref]

A. Yariv and P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,” J. Opt. Soc. Am. 67(4), 438–447 (1977).
[Crossref]

P. Yeh, A. Yariv, and C-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
[Crossref]

YuHang, Wan

Wan YuHang, Zheng Zheng, Shi XiaoGang, Bian YuSheng, and Liu JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China Tech. Sci. 56(3), 567–572 (2013).
[Crossref]

YuSheng, Bian

Wan YuHang, Zheng Zheng, Shi XiaoGang, Bian YuSheng, and Liu JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China Tech. Sci. 56(3), 567–572 (2013).
[Crossref]

Zerrad, M.

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

A. L. Lereu, M. Zerrad, C. Ndiaye, F. Lemarchand, and C. Amra, “Scattering losses in multidielectric structures designed for giant optical field enhancement,” Appl. Opt. 53(4), A412–A416 (2014).
[Crossref] [PubMed]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[Crossref]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 8168–8174, (2011).

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserré, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin-film multilayers at resonances under total reflection,” Appl. Opt. 50(9), C382–C387 (2011).
[Crossref] [PubMed]

Zheng, Zheng

Wan YuHang, Zheng Zheng, Shi XiaoGang, Bian YuSheng, and Liu JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China Tech. Sci. 56(3), 567–572 (2013).
[Crossref]

Anal.l Biochem. (1)

R. Badugu, E. Descrovi, and J. R. Lakowic, “Radiative Decay Engineering 7: Tamm State-Coupled Emission Using a Hybrid Plasmonic-Photonic Structure,” Anal.l Biochem. 445, 1–13 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (6)

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–106 (1978).
[Crossref]

W. Ng, P. Yeh, P. C. Chen, and A. Yariv, “Optical surface waves in periodic layered medium grown by liquid phase epitaxy,” Appl. Phys. Lett. 32(6), 370–372 (1978).
[Crossref]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[Crossref]

Bioimaging (1)

P. C. Ke, X. S. Gan, J. Szajman, S. Schilders, and M. Gu, “Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack,” Bioimaging 5(1), 1–8 (1997).
[Crossref]

Biosens. Bioelectron. (1)

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[Crossref] [PubMed]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A: Pure Appl. Opt. 8, 630–638 (2006).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013).
[Crossref]

Nano Lett. (1)

R. Sainidou, J. Renger, T. V. Teperik, M-U. Gonzalez, R. Quidant, and F. J. Garcia de Abajo, “Extraordinary All-Dielectric Light Enhancement over Large Volumes,” Nano Lett. 10(11), 4450–4455 (2010).
[Crossref] [PubMed]

Opt. Comm. (1)

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Comm. 104(4–6), 234–240 (1994).
[Crossref]

Opt. Commun. (1)

Jeun Kee Chua and V. M. Murukeshan, “Resonant amplification of frustrated evanescent waves by single dielectric coating,” Opt. Commun. 283(1), 169–175 (2010).
[Crossref]

Opt. Exp. (1)

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Exp. 24(18), 20080–20088 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (2)

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 8168–8174, (2011).

A. L. Lereu, M. Zerrad, M. Petit, F. de Fornel, and C. Amra, “Multi-dielectric stacks as a platform for giant optical field,” Proc. SPIE 9162, 916219 (2014).
[Crossref]

Quantum Semiclass. Opt. (1)

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors,” Quantum Semiclass. Opt. 8, 603–627 (1996).
[Crossref]

Sci. China Tech. Sci. (1)

Wan YuHang, Zheng Zheng, Shi XiaoGang, Bian YuSheng, and Liu JianSheng, “Hybrid plasmon waveguide leveraging Bloch surface polaritons for sub-wavelength confinement,” Sci. China Tech. Sci. 56(3), 567–572 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

K. Mehrany, S. Khorasani, and B. Rashidian, “Novel optical devices based on surface wave excitation at conducting interfaces,” Semicond. Sci. Technol. 18, 582–588 (2003).
[Crossref]

Sens. Actuat. A (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuat. A 159(1), 24–32 (2010).
[Crossref]

Sens. Actuat. B (2)

A. Sinibaldi, N. Danz, E. Descrovic, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B 174, 292–298 (2012).
[Crossref]

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuat. B 71(1–2), 42–46 (2000).
[Crossref]

Sensors (1)

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A Fluorescent One-Dimensional Photonic Crystal for Label-Free Biosensing Based on Bloch Surface Waves,” Sensors 13(2), 2011–2022 (2013).
[Crossref] [PubMed]

Other (1)

M. Lequime and C. Amra, De l’Optique Electromagnétique à l’Interférométrie, (EDP Sciences, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Typical dielectric multi-layer and the used analytical parameters. For all the numerical work presented here we have used n0=1.52, nH =2.141, nL=1.46, nS=1 for a TE-polarized incident beam at 633 nm with an incidence at 45°. Note that the choice of nH and nL were done in reference to the refractive indices of Ta2O5 and SiO2 respectively. Different optimizations are then carried out for 10−2<n p <10−5.
Fig. 2
Fig. 2 Numerical evidences of the angular divergence (Δθ) (a) and the spectral bandwidth (Δλ) (b) of the illumination for a dielectric multi-layer with an absorptive top layer of imaginary index n p = 10 3 . The absorption is optimized to be 100% when Δθ and Δλ equal 0. In (a) we add angular divergences of Δθ=0.1 mrd (red line) and 1 mrd divergence (blue line) that induce a drop in the absorption by ≈ 80% and 20%, respectively. In (b), for spectral bandwidths of Δλ =0.1 nm (red line) or 1 nm (blue line), the absorption falls to 90% and 60% respectively.
Fig. 3
Fig. 3 Numerical calculations of the measurable absorption as a function of illumination angular divergence Δθ (a) or as a function of the spectral bandwidth Δλ (b). Optimized DMs with absorptive top layers of imaginary indices n p from 2.10−5 up to 5.10−2 are considered. The hatched regions mark the experimental limitations that cannot be achievable currently.
Fig. 4
Fig. 4 (a) Representation in logarithmic scale of the spectral evolution of the electromagnetic field within an optimized dielectric multi-layer designed for n p = 10−3 when illuminated by the left side through a silica prism. Black lines represent interfaces of the dielectric multi-layer, and the right side of the DM is the field in Air, i.e. the emergent medium. (b) gives the evolution of optical indexes of each layer within the structure.

Tables (1)

Tables Icon

Table 1 Summary of the angular and spectral divergences effect over the absorption for four optimized DMs of different n p .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( x , z ) = σ A 0 + ( σ σ 0 ) exp [ j ( σ x + α z ) ] d σ
σ 0 = k 0 sin θ 0 = 2 π λ 0 n 0 sin θ 0
σ = 2 π λ 0 n 0 sin θ θ [ θ 0 Δ θ 0 2 , θ 0 + Δ θ 0 2 ] .
σ < k α = k 0 2 σ 2 .
E r ( x , y ) = σ A 0 + ( σ σ 0 ) r ( σ ) exp [ j ( σ x α z ) ] d σ .
ϕ 0 + = σ α ( σ ) | A 0 + ( σ σ 0 ) | 2 d σ ,
ϕ 0 = σ α ( σ ) R ( σ ) | A 0 + ( σ σ 0 ) | 2 d σ ,
A ( θ 0 , Δ θ 0 ) = 1 ϕ 0 ϕ 0 + = 1 ϕ 0 + σ α ( σ ) [ 1 R ( σ ) ] | A 0 + ( σ σ 0 ) | 2 d σ .
E 2 ( x ) = E 0 3 e ( x L ) 2 ,
ϕ 0 + = π L E 0 2 .
A 0 + 2 ( σ ) = E 0 2 T F 1 D { e ( x L ) 2 } = E 0 2 L 2 π exp [ ( L σ 2 π ) 2 ] .
L σ m a x 2 π = 1 , σ m a x = 2 π L = 2 π λ 0 n o sin Δ θ 0 2 π λ 0 n 0 Δ θ 0 , Δ θ 0 λ 0 n 0 L .
A ( λ 0 , Δ λ 0 ) = 1 ϕ 0 ϕ 0 + = 1 ϕ 0 + ω α ( ω ) [ 1 R ( ω ) ] | A 0 + ( ω ω 0 ) | 2 d ω .
Δ ω = 2 π c λ 2 Δ λ
A ( λ 0 , Δ λ 0 ) = 1 ϕ 0 ϕ 0 + = 2 π c ϕ 0 + λ α ( λ ) [ 1 R ( λ ) ] | A 0 + ( λ λ 0 ) | 2 d λ λ 2 .

Metrics