Abstract

The structure of domain walls (DW) in ferroelectric media is of great interest as this material is used for frequency doublers and other applications. We show that the structure of the DWs can nicely be visualized by high resolution optical coherence tomography (OCT). While the high group refractive index of lithium niobate allows a resolution much better than 1 µm, the large dispersion can blur the image and has to be compensated. Therefore, we developed an adaptive dispersion compensation algorithm based on maximizing the intensity of the DWs. By measuring a group of DWs, the mean period of the DWs could be measured with an accuracy of less than 10 nm differentiating samples with only 30 nm distinct periods. By analyzing the peak position, amplitude and phase shift within a DW, we were able to determine steps in the DW of only 50 nm. Furthermore, the inclined course of the DWs in a fan-shaped frequency doubler could be displayed. Therefore, we conclude that OCT is able to provide valuable information about the structure of domain walls in periodically poled lithium niobate (PPLN).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics

Shan-Chuang Pei, Tuan-Shu Ho, Chien-Chung Tsai, Ting-Hao Chen, Yi Ho, Pi-Ling Huang, A. H. Kung, and Sheng-Lung Huang
Opt. Express 19(8) 7153-7160 (2011)

Electrode geometries for periodic poling of ferroelectric materials

M. Reich, F. Korte, C. Fallnich, H. Welling, and A. Tünnermann
Opt. Lett. 23(23) 1817-1819 (1998)

Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals

Shoujun Zheng, Yongfa Kong, Hongde Liu, Shaolin Chen, Ling Zhang, Shiguo Liu, and Jingjun Xu
Opt. Express 20(27) 29131-29136 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11(14), 1709–1713 (2003).
    [Crossref] [PubMed]
  2. B. Dolasinski, P. E. Powers, J. W. Haus, and A. Cooney, “Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG,” Opt. Express 23(3), 3669–3680 (2015).
    [Crossref] [PubMed]
  3. A. Bostani, M. Ahlawat, A. Tehranchi, R. Morandotti, and R. Kashyap, “Design, fabrication and characterization of a specially apodized chirped grating for reciprocal second harmonic generation,” Opt. Express 23(4), 5183–5189 (2015).
    [Crossref] [PubMed]
  4. M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24(21), 23992–24001 (2016).
    [Crossref] [PubMed]
  5. P. Rigaud, A. Van de Walle, M. Hanna, N. Forget, F. Guichard, Y. Zaouter, K. Guesmi, F. Druon, and P. Georges, “Supercontinuum-seeded few-cycle mid-infrared OPCPA system,” Opt. Express 24(23), 26494–26502 (2016).
    [Crossref] [PubMed]
  6. T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, “Free-electron gas at charged domain walls in insulating BaTiO3,” Nat. Commun. 4, 1808 (2013).
    [Crossref] [PubMed]
  7. D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
    [Crossref] [PubMed]
  8. J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, “Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films,” Adv. Mater. 23(45), 5377–5382 (2011).
    [Crossref] [PubMed]
  9. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
    [Crossref] [PubMed]
  10. M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting domain walls in lithium niobate single crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
    [Crossref]
  11. M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
    [Crossref]
  12. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, “Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography,” Opt. Express 11(4), 392–405 (2003).
    [Crossref] [PubMed]
  13. V. Bermúdez, F. Caccavale, C. Sada, F. Segato, and E. Dieguez, “Etching effect on periodic domain structures of lithium niobate crystals,” J. Cryst. Growth 191(3), 589–593 (1998).
    [Crossref]
  14. P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010).
    [Crossref]
  15. J. Harris, G. Norris, and G. McConnell, “Characterisation of periodically poled materials using nonlinear microscopy,” Opt. Express 16(8), 5667–5672 (2008).
    [Crossref] [PubMed]
  16. P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
    [Crossref]
  17. P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
    [Crossref]
  18. T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel, and L. M. Eng, “Real-time three-dimensional profiling of ferroelectric domain walls,” Appl. Phys. Lett. 107(15), 152905 (2015).
    [Crossref]
  19. T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
    [Crossref]
  20. V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
    [Crossref]
  21. T. Jungk, A. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
    [Crossref]
  22. K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
    [Crossref] [PubMed]
  23. S. C. Pei, T. S. Ho, C. C. Tsai, T. H. Chen, Y. Ho, P. L. Huang, A. H. Kung, and S. L. Huang, “Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics,” Opt. Express 19(8), 7153–7160 (2011).
    [Crossref] [PubMed]
  24. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
    [Crossref]
  25. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
    [Crossref] [PubMed]
  26. W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express 20(23), 25357–25368 (2012).
    [Crossref] [PubMed]
  27. F. Köttig, P. Cimalla, M. Gärtner, and E. Koch, “An advanced algorithm for dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 20(22), 24925–24948 (2012).
    [Crossref] [PubMed]
  28. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide –doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [Crossref]
  29. L. Pan, X. Wang, Z. Li, X. Zhang, Y. Bu, N. Nan, Y. Chen, X. Wang, and F. Dai, “Depth-dependent dispersion compensation for full-depth OCT image,” Opt. Express 25(9), 10345–10354 (2017).
    [Crossref] [PubMed]
  30. E. Koch, A. Popp, D. Boller, H.-F. Schleiermacher, and P. Koch, “Fiber Optic Distance Sensor with Sub-nm Axial Resolution” in Proc. SPIE, W. Drexler, ed. (Optical Society of America, 2005).
    [Crossref]
  31. R. Grombe, L. Kirsten, M. Mehner, T. P. Linsinger, and E. Koch, “Improved non-invasive Optical Coherence Tomography detection of different engineered nanoparticles in food-mimicking matrices,” Food Chem. 212, 571–575 (2016).
    [Crossref] [PubMed]
  32. N. Lippok, S. Coen, P. Nielsen, and F. Vanholsbeeck, “Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform,” Opt. Express 20(21), 23398–23413 (2012).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

2015 (3)

2014 (4)

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

2013 (1)

T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, “Free-electron gas at charged domain walls in insulating BaTiO3,” Nat. Commun. 4, 1808 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (2)

2010 (1)

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010).
[Crossref]

2009 (4)

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

T. Jungk, A. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
[Crossref] [PubMed]

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
[Crossref] [PubMed]

2008 (1)

2003 (2)

2002 (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

2000 (1)

V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
[Crossref]

1998 (1)

V. Bermúdez, F. Caccavale, C. Sada, F. Segato, and E. Dieguez, “Etching effect on periodic domain structures of lithium niobate crystals,” J. Cryst. Growth 191(3), 589–593 (1998).
[Crossref]

1997 (1)

Ahlawat, M.

Arizmendi, L.

V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
[Crossref]

Aveline, D.

Balke, N.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Baró, A. M.

V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
[Crossref]

Baumann, B.

Becher, C.

Bednyakov, P.

T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, “Free-electron gas at charged domain walls in insulating BaTiO3,” Nat. Commun. 4, 1808 (2013).
[Crossref] [PubMed]

Bermúdez, V.

V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
[Crossref]

V. Bermúdez, F. Caccavale, C. Sada, F. Segato, and E. Dieguez, “Etching effect on periodic domain structures of lithium niobate crystals,” J. Cryst. Growth 191(3), 589–593 (1998).
[Crossref]

Bock, M.

Bonnell, D. A.

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

Bostani, A.

Bourson, P.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010).
[Crossref]

Bu, Y.

Caccavale, F.

V. Bermúdez, F. Caccavale, C. Sada, F. Segato, and E. Dieguez, “Etching effect on periodic domain structures of lithium niobate crystals,” J. Cryst. Growth 191(3), 589–593 (1998).
[Crossref]

Cano, A.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

Catalan, G.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Cha, M.

Chen, T. H.

Chen, X.

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

Chen, Y.

Chiarini, M.

Choi, W.

Chu, Y. H.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Chunnilall, C.

Cimalla, P.

Coen, S.

Colchero, J.

V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
[Crossref]

Cooney, A.

Cuevas, M.

Dai, F.

De Natale, P.

De Nicola, S.

Delaney, K.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

Dieguez, E.

V. Bermúdez, F. Caccavale, C. Sada, F. Segato, and E. Dieguez, “Etching effect on periodic domain structures of lithium niobate crystals,” J. Cryst. Growth 191(3), 589–593 (1998).
[Crossref]

Diéguez, E.

V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
[Crossref]

Dolasinski, B.

Druon, F.

Eng, L. M.

T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel, and L. M. Eng, “Real-time three-dimensional profiling of ferroelectric domain walls,” Appl. Phys. Lett. 107(15), 152905 (2015).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
[Crossref]

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting domain walls in lithium niobate single crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

Ferraro, P.

Fiebig, M.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

Finizio, A.

Fontana, M. D.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010).
[Crossref]

Forget, N.

Fujimoto, J. G.

Gajek, M.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Gaponenko, I.

J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, “Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films,” Adv. Mater. 23(45), 5377–5382 (2011).
[Crossref] [PubMed]

Gariglio, S.

J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, “Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films,” Adv. Mater. 23(45), 5377–5382 (2011).
[Crossref] [PubMed]

Gärtner, M.

Gemming, S.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Georges, P.

Gil, A.

V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
[Crossref]

Grilli, S.

Grombe, R.

R. Grombe, L. Kirsten, M. Mehner, T. P. Linsinger, and E. Koch, “Improved non-invasive Optical Coherence Tomography detection of different engineered nanoparticles in food-mimicking matrices,” Food Chem. 212, 571–575 (2016).
[Crossref] [PubMed]

Guesmi, K.

Guichard, F.

Guyonnet, J.

J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, “Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films,” Adv. Mater. 23(45), 5377–5382 (2011).
[Crossref] [PubMed]

Hanna, M.

Harris, J.

Haus, J. W.

Haußmann, A.

T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel, and L. M. Eng, “Real-time three-dimensional profiling of ferroelectric domain walls,” Appl. Phys. Lett. 107(15), 152905 (2015).
[Crossref]

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
[Crossref]

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting domain walls in lithium niobate single crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Hawkridge, M. E.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

He, Q.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

Ho, T. S.

Ho, Y.

Hoffmann, A.

T. Jungk, A. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

Huang, P. L.

Huang, S. L.

Jundt, D.

Jungk, T.

T. Jungk, A. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

Kalinin, S. V.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Kämpfe, T.

T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel, and L. M. Eng, “Real-time three-dimensional profiling of ferroelectric domain walls,” Appl. Phys. Lett. 107(15), 152905 (2015).
[Crossref]

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
[Crossref]

Kang, Y. S.

Karamata, B.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

Kashyap, R.

Kim, B. J.

Kirsten, L.

R. Grombe, L. Kirsten, M. Mehner, T. P. Linsinger, and E. Koch, “Improved non-invasive Optical Coherence Tomography detection of different engineered nanoparticles in food-mimicking matrices,” Food Chem. 212, 571–575 (2016).
[Crossref] [PubMed]

Koch, E.

Köttig, F.

Kumagai, Y.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

Kung, A. H.

Kuznetsov, D. K.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010).
[Crossref]

Lasser, T.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

Lenhard, A.

Li, Z.

Lim, H. H.

Linsinger, T. P.

R. Grombe, L. Kirsten, M. Mehner, T. P. Linsinger, and E. Koch, “Improved non-invasive Optical Coherence Tomography detection of different engineered nanoparticles in food-mimicking matrices,” Food Chem. 212, 571–575 (2016).
[Crossref] [PubMed]

Lippok, N.

Lundblad, N.

Maksymovych, P.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Maleki, L.

Martin, L. W.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

McConnell, G.

Mehner, M.

R. Grombe, L. Kirsten, M. Mehner, T. P. Linsinger, and E. Koch, “Improved non-invasive Optical Coherence Tomography detection of different engineered nanoparticles in food-mimicking matrices,” Food Chem. 212, 571–575 (2016).
[Crossref] [PubMed]

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
[Crossref] [PubMed]

Meier, D.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

Morandotti, R.

Mostovoy, M.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

Nan, N.

Nielsen, P.

Norris, G.

Orenstein, J.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Pan, L.

Pandiyan, K.

Paruch, P.

J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, “Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films,” Adv. Mater. 23(45), 5377–5382 (2011).
[Crossref] [PubMed]

Pei, S. C.

Pierattini, G.

Poppe, J.

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

Powers, P. E.

Ramesh, R.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Reichenbach, P.

T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel, and L. M. Eng, “Real-time three-dimensional profiling of ferroelectric domain walls,” Appl. Phys. Lett. 107(15), 152905 (2015).
[Crossref]

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

Rigaud, P.

Rother, A.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Sada, C.

V. Bermúdez, F. Caccavale, C. Sada, F. Segato, and E. Dieguez, “Etching effect on periodic domain structures of lithium niobate crystals,” J. Cryst. Growth 191(3), 589–593 (1998).
[Crossref]

Schröder, M.

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting domain walls in lithium niobate single crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Scott, J. F.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Segato, F.

V. Bermúdez, F. Caccavale, C. Sada, F. Segato, and E. Dieguez, “Etching effect on periodic domain structures of lithium niobate crystals,” J. Cryst. Growth 191(3), 589–593 (1998).
[Crossref]

Seidel, J.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Setter, N.

T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, “Free-electron gas at charged domain walls in insulating BaTiO3,” Nat. Commun. 4, 1808 (2013).
[Crossref] [PubMed]

Shur, V. Y.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010).
[Crossref]

Sluka, T.

T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, “Free-electron gas at charged domain walls in insulating BaTiO3,” Nat. Commun. 4, 1808 (2013).
[Crossref] [PubMed]

Small, D. L.

Soergel, E.

T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel, and L. M. Eng, “Real-time three-dimensional profiling of ferroelectric domain walls,” Appl. Phys. Lett. 107(15), 152905 (2015).
[Crossref]

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting domain walls in lithium niobate single crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

T. Jungk, A. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

Spaldin, N. A.

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

Swanson, E. A.

Tagantsev, A. K.

T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, “Free-electron gas at charged domain walls in insulating BaTiO3,” Nat. Commun. 4, 1808 (2013).
[Crossref] [PubMed]

Tehranchi, A.

Thiessen, A.

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
[Crossref]

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting domain walls in lithium niobate single crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Thompson, R.

Tsai, C. C.

Tu, M.

Van de Walle, A.

Vanholsbeeck, F.

Walther, J.

Wang, F.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Wang, X.

Woike, T.

T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel, and L. M. Eng, “Real-time three-dimensional profiling of ferroelectric domain walls,” Appl. Phys. Lett. 107(15), 152905 (2015).
[Crossref]

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
[Crossref]

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting domain walls in lithium niobate single crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Yu, P.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Zaouter, Y.

Zawadzki, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

Zelenovskiy, P. S.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010).
[Crossref]

Zelmon, D. E.

Zhan, Q.

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

Zhang, X.

Adv. Funct. Mater. (1)

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, “Conducting domain walls in lithium niobate single crystals,” Adv. Funct. Mater. 22(18), 3936–3944 (2012).
[Crossref]

Adv. Mater. (1)

J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, “Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films,” Adv. Mater. 23(45), 5377–5382 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

P. Reichenbach, T. Kämpfe, A. Thiessen, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals,” Appl. Phys. Lett. 105(12), 122906 (2014).
[Crossref]

T. Kämpfe, P. Reichenbach, A. Haußmann, T. Woike, E. Soergel, and L. M. Eng, “Real-time three-dimensional profiling of ferroelectric domain walls,” Appl. Phys. Lett. 107(15), 152905 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010).
[Crossref]

Food Chem. (1)

R. Grombe, L. Kirsten, M. Mehner, T. P. Linsinger, and E. Koch, “Improved non-invasive Optical Coherence Tomography detection of different engineered nanoparticles in food-mimicking matrices,” Food Chem. 212, 571–575 (2016).
[Crossref] [PubMed]

J. Appl. Phys. (1)

P. Reichenbach, T. Kämpfe, A. Thiessen, M. Schröder, A. Haußmann, T. Woike, and L. M. Eng, “Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3,” J. Appl. Phys. 115(21), 213509 (2014).
[Crossref]

J. Cryst. Growth (1)

V. Bermúdez, F. Caccavale, C. Sada, F. Segato, and E. Dieguez, “Etching effect on periodic domain structures of lithium niobate crystals,” J. Cryst. Growth 191(3), 589–593 (1998).
[Crossref]

J. Mater. Res. (1)

V. Bermúdez, A. Gil, L. Arizmendi, J. Colchero, A. M. Baró, and E. Diéguez, “Techniques of observation and characterization of the domain structure in periodically poled lithium niobate,” J. Mater. Res. 15(12), 2814–2821 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Res. Express (1)

M. Schröder, X. Chen, A. Haußmann, A. Thiessen, J. Poppe, D. A. Bonnell, and L. M. Eng, “Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals,” Mater. Res. Express 1(3), 035012 (2014).
[Crossref]

Nat. Commun. (1)

T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, “Free-electron gas at charged domain walls in insulating BaTiO3,” Nat. Commun. 4, 1808 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, “Anisotropic conductance at improper ferroelectric domain walls,” Nat. Mater. 11(4), 284–288 (2012).
[Crossref] [PubMed]

J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, “Conduction at domain walls in oxide multiferroics,” Nat. Mater. 8(3), 229–234 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

T. Jungk, A. Hoffmann, and E. Soergel, “Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy,” New J. Phys. 11(3), 033029 (2009).
[Crossref]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

Opt. Express (14)

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
[Crossref] [PubMed]

W. Choi, B. Baumann, E. A. Swanson, and J. G. Fujimoto, “Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina,” Opt. Express 20(23), 25357–25368 (2012).
[Crossref] [PubMed]

F. Köttig, P. Cimalla, M. Gärtner, and E. Koch, “An advanced algorithm for dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 20(22), 24925–24948 (2012).
[Crossref] [PubMed]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
[Crossref] [PubMed]

S. C. Pei, T. S. Ho, C. C. Tsai, T. H. Chen, Y. Ho, P. L. Huang, A. H. Kung, and S. L. Huang, “Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics,” Opt. Express 19(8), 7153–7160 (2011).
[Crossref] [PubMed]

L. Pan, X. Wang, Z. Li, X. Zhang, Y. Bu, N. Nan, Y. Chen, X. Wang, and F. Dai, “Depth-dependent dispersion compensation for full-depth OCT image,” Opt. Express 25(9), 10345–10354 (2017).
[Crossref] [PubMed]

N. Lippok, S. Coen, P. Nielsen, and F. Vanholsbeeck, “Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform,” Opt. Express 20(21), 23398–23413 (2012).
[Crossref] [PubMed]

R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11(14), 1709–1713 (2003).
[Crossref] [PubMed]

B. Dolasinski, P. E. Powers, J. W. Haus, and A. Cooney, “Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG,” Opt. Express 23(3), 3669–3680 (2015).
[Crossref] [PubMed]

A. Bostani, M. Ahlawat, A. Tehranchi, R. Morandotti, and R. Kashyap, “Design, fabrication and characterization of a specially apodized chirped grating for reciprocal second harmonic generation,” Opt. Express 23(4), 5183–5189 (2015).
[Crossref] [PubMed]

M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24(21), 23992–24001 (2016).
[Crossref] [PubMed]

P. Rigaud, A. Van de Walle, M. Hanna, N. Forget, F. Guichard, Y. Zaouter, K. Guesmi, F. Druon, and P. Georges, “Supercontinuum-seeded few-cycle mid-infrared OPCPA system,” Opt. Express 24(23), 26494–26502 (2016).
[Crossref] [PubMed]

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, “Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography,” Opt. Express 11(4), 392–405 (2003).
[Crossref] [PubMed]

J. Harris, G. Norris, and G. McConnell, “Characterisation of periodically poled materials using nonlinear microscopy,” Opt. Express 16(8), 5667–5672 (2008).
[Crossref] [PubMed]

Phys. Rev. B (1)

T. Kämpfe, P. Reichenbach, M. Schröder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B 89(3), 035314 (2014).
[Crossref]

Other (1)

E. Koch, A. Popp, D. Boller, H.-F. Schleiermacher, and P. Koch, “Fiber Optic Distance Sensor with Sub-nm Axial Resolution” in Proc. SPIE, W. Drexler, ed. (Optical Society of America, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of the PPLN-crystal showing the inverted domains and the inclined surface. The entrance surface is ground under an angle of α ≈4 degrees. The OCT beam is tilted by β relative to the crystal surface, so that the domain walls are perpendicular to the OCT beam (red) inside the crystal. The pitch and width of the domains are enlarged in this sketch.

Fig. 2
Fig. 2

Image of the PPLN-crystal with (a) optimal dispersion compensation for the surface of the crystal, (b) additional dispersion compensation of 5 π, in both images the stripe with optimal dispersion is indicated by blue arrows. (c) Overlay of parts with optimal dispersion compensation. (d) Color map of optimal dispersion correction. The additional phase correction has an amplitude corresponding to the color scale in units of π. (e) The dispersion correction is smoothed horizontally to have reasonable values in areas without signal. (Scale bar calculated for PPLN area.). All images show the same area.

Fig. 3
Fig. 3

(a) Image of a PPLN crystal with few defects. In each column the amplitude from 100 A-scans was averaged. From this the position of the DWs was calculated by a peak detection algorithm. (Scale bar calculated for PPLN area.) In (b) the difference between each second DW is plotted as a function of the domain number for the central column starting from the gap in the domain structure. From domain number 35 to 40 the variation of the data increases because of the low SNR.

Fig. 4
Fig. 4

In (a), the peak position of one DW is drawn as a function of the A-scan number. From the flat areas at both sides, a step of about 0.3 pixel can be estimated. The intensity in the vicinity of this step reduces to about 10% of the maximum. The width of about 15 pixel is slightly larger than the transversal resolution of the system. (b) Phase change at one DW over 140 A-scans. Three major steps of approximately 3 rad, 2 rad and 1.5 rad can be seen. Correlated to these steps, the intensity of the peak drops. A phase change of 2 corresponds to a step of 50 nm in LNO. (c) Calculation of the relative drop of the amplitude of a DW in the middle of a step as a function of the step heights in µm. (d) High-resolution SD-OCT image of the central x,z-plane measured with a x-step of only 0.8 µm. The image shows an area of 959 pixels in both directions. The insets show the analyzed areas of (a) bottom and (b) top. Blue arrows indicate the position of reduced amplitude. In the top image, the reduction is hardly visible in the false color map due to the logarithmic scale.

Fig. 5
Fig. 5

OCT images of a PPLN crystal with variable pitch. The simplified structure of the domains inside the crystal and the orientation of the analyzing OCT- beam (red arrow) are shown in (c). The crystal was tilted until the Fresnel reflex from the surface did not saturate the detector. As the domains are separated from the surface, the crystal was moved closely to the scanner leading to mirror artifacts of the crystal surface at larger entrance angles. Therefore, the mirror image is partly shown at the top. The position of zero path is the horizontal bright line. In (a), the true surface is behind the zero path position while in (b) the surface crosses zero path near the middle of the image. In both images the true surface is marked by a blue line showing the larger entrance angle in (b). Further tilting of the crystal in order to get the DWs horizontal reduced the intensity under the noise level. At the left border of the domains, the period of the DWs was measured from 12 domains to be (28.05 ± 1.00) µm in perfect agreement to the data from the manufacturer (28 µm). Again, above the DWs faint echoes are the results of interference between different DWs. This shows, better than the strongly inclined DWs itself, the increasing width of the domains from left to right. Especially at the stronger inclined image (b), it is apparent that every second DW results in a weaker echo. This effect is not understood. Within the LNO crystal the horizontal scale is compressed by a factor of ~10. (d) Scheme explaining the reduction of the intensity of inclined DWs. The microscopic structure of the inclined DW is mostly oriented in the direction of the crystallographic axis and therefore has facets under zero and 60°. Although the mean surface plane (violet line) is oriented perpendicular to the OCT beam, the light is reflected at the facets leading to a reduction of the intensity when tilting the crystallographic axis against the direction of the OCT beam.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δφ= φ air φ LNO =4π( 1 n Ph n Group ) Sp λ 0 Peak
φ LNO =4π n Ph d λ 0
φ air =4π d λ 0
Peak= n Group d Sp
Peak= d Sp
φ air =4π Sp λ 0 Peak
φ LNO =4π n Ph n Group Sp λ 0 Peak
Δφ= φ air φ LNO =4π( 1 n Ph n Group ) Sp λ 0 Peak

Metrics