Abstract

We present a simple all-solid-state laser source emitting 2.4 W of single-frequency light at 671 nm for laser cooling of lithium atoms. It is based on a diode-pumped solid-state laser, which is frequency doubled in a ppZnO:LN ridge waveguide with an internal doubling efficiency of 54%. We develop a simple theory for the thermal effects we observed at elevated fundamental powers, and compare the setup to a more efficient but more complex one with an external resonant frequency doubling cavity providing 5.2 W at 671 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy
Opt. Express 21(7) 9091-9102 (2013)

Watt-level second-harmonic generation at 589  nm with a PPMgO:LN ridge waveguide crystal pumped by a DBR tapered diode laser

R. Bege, D. Jedrzejczyk, G. Blume, J. Hofmann, D. Feise, K. Paschke, and G. Tränkle
Opt. Lett. 41(7) 1530-1533 (2016)

References

  • View by:
  • |
  • |
  • |

  1. U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.
  2. M Squared Lasers (personal communication, 2016).
  3. U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
    [Crossref]
  4. P. Koch, F. Ruebel, J. Bartschke, and J.A. L’huillier, “5.7 W cw single-frequency laser at 671 nm by single-pass second harmonic generation of a 17.2 W injection-locked 1342 nm Nd: YVO 4 ring laser using periodically poled MgO: LiNbO3,” Appl. Opt. 54(33), 9954–9959 (2015).
    [Crossref]
  5. U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
    [Crossref] [PubMed]
  6. F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.
  7. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31, 3297–3299 (2006).
    [Crossref] [PubMed]
  8. D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
    [Crossref]
  9. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
    [Crossref]
  10. G. Trénec, W. Volondat, O. Cugat, and J. Vigué, “Permanent magnets for faraday rotators inspired by the design of the magic sphere,” Appl. Opt. 50, 4788–4797 (2011).
    [Crossref] [PubMed]
  11. U. Eismann, “A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas”, Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, http://tel.archives-ouvertes.fr/tel-00702865/ (2012).
  12. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
    [Crossref]
  13. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
    [Crossref] [PubMed]
  14. Dr. Yoshiki Nishida from NTT Electronics (personal communication, 2014–2017).
  15. O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
    [Crossref]
  16. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [Crossref]
  17. K. Parameswaran, J. Kurz, R. Roussev, and M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
    [Crossref]
  18. T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).
  19. D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
    [Crossref]
  20. S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8(4), 797–804 (1991).
    [Crossref]
  21. F. Laurell and G. Arvidsson, “Frequency doubling in Ti:MgO:LiNbO3 channel waveguides,” J. Opt. Soc. Am. B 5(2), 292–299 (1988).
    [Crossref]
  22. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [Crossref]
  23. R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.
  24. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
    [Crossref]
  25. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
    [Crossref]
  26. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  27. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  28. J. R. Cannon, The One-Dimensional Heat Equation (Cambridge University, 1984).
    [Crossref]
  29. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  30. K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).
  31. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [Crossref]
  32. V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
    [Crossref]
  33. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
    [Crossref]
  34. E. Mimoun, L. De Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nmlight with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008).
    [Crossref]
  35. M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
    [Crossref]
  36. V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
    [Crossref]
  37. B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
    [Crossref]
  38. F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
    [Crossref]
  39. D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
    [Crossref]

2016 (1)

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

2015 (2)

P. Koch, F. Ruebel, J. Bartschke, and J.A. L’huillier, “5.7 W cw single-frequency laser at 671 nm by single-pass second harmonic generation of a 17.2 W injection-locked 1342 nm Nd: YVO 4 ring laser using periodically poled MgO: LiNbO3,” Appl. Opt. 54(33), 9954–9959 (2015).
[Crossref]

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

2013 (1)

2012 (2)

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

2011 (1)

2010 (1)

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

2009 (2)

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

2008 (3)

2006 (1)

2005 (1)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

2003 (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

2002 (1)

2001 (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

1999 (1)

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

1997 (2)

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[Crossref]

1991 (2)

S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8(4), 797–804 (1991).
[Crossref]

T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

1988 (2)

F. Laurell and G. Arvidsson, “Frequency doubling in Ti:MgO:LiNbO3 channel waveguides,” J. Opt. Soc. Am. B 5(2), 292–299 (1988).
[Crossref]

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

1966 (1)

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Alibart, O.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Arvidsson, G.

Ashkin, A.

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Asobe, M.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Bader, U.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Bartschke, J.

Batchko, R. G.

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Bauer, T.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

Beck, J. V.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Bergschneider, A.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Borsutzky, A.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Boulanger, B.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Boyd, G. D.

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Buse, K.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Byer, R. L.

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Canalias, C.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

Cannon, J. R.

J. R. Cannon, The One-Dimensional Heat Equation (Cambridge University, 1984).
[Crossref]

Chevy, F.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

Cole, K. D.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Cugat, O.

D ’Auria, V.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Dalibard, J.

De Micheli, M.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

De Sarlo, L.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
[Crossref]

Doutre, F.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Eismann, U.

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

U. Eismann, “A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas”, Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, http://tel.archives-ouvertes.fr/tel-00702865/ (2012).

Enderlein, M.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Erbert, G.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Falk, M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Fallahkhair, A. B.

Fejer, M.

Fejer, M. M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Fernandes, D. R.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Feve, J. P.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gerbier, F.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

E. Mimoun, L. De Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nmlight with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008).
[Crossref]

Gurzadjan, G. G.

V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
[Crossref]

Güther, R.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Haji-Sheikh, A.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Hänsch, T. W.

Hellstrom, J.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Helmfrid, S.

Hong, F.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

Ito, R.

Jedrzejczyk, D.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Jundt, D. H.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Kaenders, W.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Kaiser, F.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Kajiyama, M. C. C.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Karlsson, H.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Keller, F.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Khaykovich, L.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Kitamoto, A.

Kitamura, K.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Kleinman, D. A.

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Knappe, R.

Koch, P.

Kondo, T.

Kretzschmar, N.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

Kurimura, S.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Kurz, J.

L’huillier, J.A.

Labonté, L.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Laurell, F.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

F. Laurell and G. Arvidsson, “Frequency doubling in Ti:MgO:LiNbO3 channel waveguides,” J. Opt. Soc. Am. B 5(2), 292–299 (1988).
[Crossref]

Lenhardt, F.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

Li, K. S.

Litkouhi, B.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Louchev, O. A.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Lunghi, T.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Mangir, M.S.

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Maslov, V.

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

McDonagh, L.

Menaert, B.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Mikhailov, V.

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

Miller, G. D.

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Mimoun, E.

Miyazawa, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Murphy, T. E.

Nebel, A.

Nikogosjan, D. N.

V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
[Crossref]

Nikogosyan, D.

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Nishida, Y.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Nishikawa, T.

Nittmann, M.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Onae, A.

F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

Opalevs, D.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Ozawa, A.

Parameswaran, K.

Parker, C. V.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Paschke, K.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Pasiskevicius, V.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Peltz, M.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Picholle, E.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Rabinovic, M.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Rockwell, D.A.

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

Rohde, F.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Roussev, R.

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Rubinina, N. M.

T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

Ruebel, F.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Salomon, C.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

Scholz, M.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Schwesyg, J. R.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Shaunin, O.

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

Shcherbakov, I.

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

Shirane, M.

Shoji, I.

Sievers, F.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

Simeonidis, K.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Squared Lasers, M

M Squared Lasers (personal communication, 2016).

Stuhler, J.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Suchet, D.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Sumida, D.S.

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

Suzuki, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Tadanaga, O.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Tanzilli, S.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Tränkle, G.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Trénec, G.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

G. Trénec, W. Volondat, O. Cugat, and J. Vigué, “Permanent magnets for faraday rotators inspired by the design of the magic sphere,” Appl. Opt. 50, 4788–4797 (2011).
[Crossref] [PubMed]

Vigué, J.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

G. Trénec, W. Volondat, O. Cugat, and J. Vigué, “Permanent magnets for faraday rotators inspired by the design of the magic sphere,” Appl. Opt. 50, 4788–4797 (2011).
[Crossref] [PubMed]

Volk, T. R.

T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

Volondat, W.

Wallenstein, R.

L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31, 3297–3299 (2006).
[Crossref] [PubMed]

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Wu, S.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Yasuda, M.

F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

Yoshiki Nishida, Dr.

Dr. Yoshiki Nishida from NTT Electronics (personal communication, 2014–2017).

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Zondy, J.

Zukauskas, A.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (6)

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

Appl. Phys. Lett. (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Electron. Lett. (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (2)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Phys. Rev. A (1)

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Quant. Electron. (1)

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

Sov. Phys. Solid State (1)

T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

Other (11)

U. Eismann, “A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas”, Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, http://tel.archives-ouvertes.fr/tel-00702865/ (2012).

Dr. Yoshiki Nishida from NTT Electronics (personal communication, 2014–2017).

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

M Squared Lasers (personal communication, 2016).

F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

J. R. Cannon, The One-Dimensional Heat Equation (Cambridge University, 1984).
[Crossref]

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Setup of the 1342 nm laser source. Two lenses, L1 and L2, image the output of the pump source, a fiber-coupled diode laser bar (FP), into the Nd:YVO4 gain medium. The ring resonator consist of four mirrors M1−4 in bow-tie configuration, which are all highly reflective at 1342 nm except M2 serving as partly transmitting output coupling mirror. M1 is a convex meniscus in order to compensate for thermal lensing in the pumped crystal. A Faraday rotator (TGG) in combination with a half-wave plate (λ/2) and the biaxial nature of the Nd:YVO4 enforces unidirectional operation. Insertion of two etalons E1−2 allows for single-longitudinal-mode behavior and wavelength tunability.
Fig. 2
Fig. 2 Single-frequency laser output power of the laser (dots) as a function of the absorbed pump power. The setup is optimized for the maximal absorbed pump power Pabs,max = 31.3 W resulting in a maximum output power of Pout = 6.6 W. The oscillation threshold is found at Pabs = 13.9 W. A linear fit (red line) for Pabs > 20 W yields a slope efficiency of ηsl = 28.1% in the high-power regime.
Fig. 3
Fig. 3 Schematic view of the frequency doubling setup. Shown are the IR laser cavity and the wavelength conversion module. The pump diode output is focused in the Nd:YVO4 laser crystal inside the laser cavity, which also contains a Faraday rotator and a λ/2-waveplate for unidirectional oscillation and two etalons for frequency selection. The wavelength conversion module includes a ppZnO:LN nonlinear waveguide for second-harmonic generation.
Fig. 4
Fig. 4 SH power as a function of the waveguide mount temperature Tmount at the fundamental power Pω = 1.07 W and Pω = 4.44 W coupled to the waveguide. Shown are the measured data points and the simulation results of our fitted model (dashed lines).
Fig. 5
Fig. 5 Optimal crystal mount temperature Tmount,opt during SHG process in dependence of the fundamental power Pω coupled to the waveguide. The crystal mount temperature is adjusted for every value of Pω in order to maximize the corresponding SH power.
Fig. 6
Fig. 6 SH power output (a) and conversion efficiency (b) versus fundamental power coupled to the waveguide. The crystal mount temperature is adjusted for every value of Pω as presented in Fig. 5.
Fig. 7
Fig. 7 Caustic measurement of the SH output beam for the maximum fundamental power Pω = 4.44 W coupled to the waveguide and optimal QPM temperature T = 46.4°C. The fits yield values compatible with M2 ≤ 1.1. The beam profile does not show any signs of ellipticity or astigmatism.
Fig. 8
Fig. 8 Schematic view of the periodically poled ridge waveguide illustrating the chosen coordinate system for the theoretical model. The x axis denotes the light propagation direction along the horizontal ridge waveguide axis. The y axis is chosen to be the other horizontal direction perpendicular to the light propagation direction and the crystal optical axis c. The z axis corresponds to the vertical direction parallel to the crystal optical axis c.
Fig. 9
Fig. 9 Scheme of the doubling cavity setup comprising the four mirrors M′1−4 and the ppKTP nonlinear crystal. The light is coupled to the Gaussian cavity eigenmode using lenses L′1,2, whereas L′3 collimates the SH output. The crystal mount is depicted sectioned to improve visibility and the IR (SH) beam is illustrated in blue (red). The distance M′3–M′4 is 156 mm.
Fig. 10
Fig. 10 Measurement of the cavity doubling efficiency, where points are measured data and lines are fits. (a) The second harmonic output power as a function of the fundamental intra-cavity power. As expected a quadratic function can be fitted to the conversion. (b) The cavity conversion efficiency as a function of the fundamental input power.
Fig. 11
Fig. 11 Calculations for the cavity conversion efficiency. (a) The SH output power as a function of the fundamental input power for different values of the coupler reflectivity. Shown are the three experimentally available couplers, the curve for optimal Rc,opt(Pin) and, as a reference, the power of the fundamental light coupled to the TEM00 mode (1 − α1)η00Pin. (b) Cavity doubling efficiencies for the same coupler reflectivity values as before.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

S eff = ( dydz | E 1 ( y , z ) | 2 ) 2 ( dydz | E 2 ( y , z ) | 2 ) | dydz E 1 ( y , z ) 2 E 2 * ( y , z ) | 2 ,
dA 0 dx = Δ k QPM ( 2 σ 1 A 2 σ 2 A 1 2 A 2 ) cos ( A 0 )
dA 1 dx = σ 1 A 1 A 2 sin ( A 0 ) 1 2 ( α 1 + δ SHIFA A 2 4 ) A 1
dA 2 dx = σ 2 A 1 2 sin ( A 0 ) 1 2 ( α 2 + δ 2 Ph . A 2 2 ) A 2
Δ k QPM ( T ) = 2 β 1 ( T ) β 2 ( T ) + 2 π Λ ( T )
k 2 z 2 T ( z ) = q ˙ ( z )
T ( z = 0 ) = T mount
z T ( z = z H ) = 0
q ˙ ( z ) = { q ˙ R for z H z R < z < z H 0 otherwise .
T ( x , z H z R 2 ) = q ˙ R ( x ) k [ z H z R 5 8 z R 2 ] + T mount
q ˙ R ( x ) = ( α 1 + α SHIFA I 2 2 ) I 1 + ( α 2 + β 2 Ph . I 2 ) I 2 ,
P 2 ω = η SHG P ω 2 ,
η SHG = 2 ω 3 d eff 3 L π ε 0 c 0 4 n ω n 2 ω h ( α , β ) ,
h ( α , β ) = 1 4 α | α α e i β τ 1 + i τ d τ | 2 ,
β = β ( T ) = 4 π z R λ ( n ω ( T ) n 2 ω ( T ) ) 2 π z R / Λ ( T ) ,
P ω = ( 1 R c α 1 ) η 00 P in ( 1 R c ( 1 α tot ) ( 1 η SHG P ω ) ) 2 ,
η cav = P 2 ω P in = η SHG P ω 2 P in .

Metrics