Abstract

Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

7 July 2017: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Concept of a microscale vector magnetic field sensor based on nitrogen-vacancy centers in diamond

Alexander K. Dmitriev and Anton K. Vershovskii
J. Opt. Soc. Am. B 33(3) B1-B4 (2016)

Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen–vacancy centers in diamond

S. M. Blakley, I. V. Fedotov, L. V. Amitonova, E. E. Serebryannikov, H. Perez, S. Ya. Kilin, and A. M. Zheltikov
Opt. Lett. 41(9) 2057-2060 (2016)

Accuracy in the measurement of magnetic fields using nitrogen-vacancy centers in nanodiamonds

Haroon Aman and Taras Plakhotnik
J. Opt. Soc. Am. B 33(3) B19-B27 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapour,” Phys. Rev. 107, 1559–1565 (1957).
    [Crossref]
  2. S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, “Single-ion quantum lock-in amplifier,” Nature 473, 61–65 (2011).
    [Crossref] [PubMed]
  3. S. M. Salapaka and M. V. Salapaka, “Scanning probe microscopy,” IEEE Control Syst. Mag. 28, 65–83 (2008)
    [Crossref]
  4. A. Al Mohtar, J. Vaillant, Z. Sedaghat, M. Kazan, L. Joly, C. Stoeffler, J. Cousin, A. Khoury, and A. Bruyant, “Generalised lock-in detection for interferometry: application to phase sensitive spectroscopy and near-field nanoscopy,” Opt. Express 22, 22232–22245 (2014)
    [Crossref] [PubMed]
  5. R. H. Dicke, “The measurement of thermal radiation at microwave frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
    [Crossref] [PubMed]
  6. I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
    [Crossref]
  7. H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
    [Crossref]
  8. D. Robbes, “High sensitive magnetometers-a review,” Sensor Actuat. A-Phys. 129, 86–93 (2006).
    [Crossref]
  9. D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
    [Crossref] [PubMed]
  10. I. K. Kominis, T. W. Kornak, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 442, 596–599 (2003).
    [Crossref]
  11. L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
    [Crossref] [PubMed]
  12. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centres in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65, 83–105 (2014).
    [Crossref]
  13. J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
    [Crossref]
  14. T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
  15. N.M. Nusran and M. V. Gurudev Dutt, “Dual-channel lock-in magnetometer with a single spin diamond,” Phys. Rev. B 88, 220410 (2013).
    [Crossref]
  16. R. S. Schoenfeld and W. Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Phys. Rev. Lett. 106, 030802 (2011).
    [Crossref] [PubMed]
  17. I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
    [Crossref]
  18. K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
    [Crossref]
  19. A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
    [Crossref]
  20. J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
    [Crossref] [PubMed]
  21. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
    [Crossref]
  22. V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
    [Crossref]
  23. N. Alsam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New Journal of Physics 15, 013064 (2013).
    [Crossref]
  24. L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New Journal of Physics 13, 025013 (2011).
    [Crossref]
  25. J. R. Carson, “Notes on the theory of modulation,” Proceedings of the Institute of Radio Engineers 10, 57–64 (1922).
  26. A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
    [Crossref]
  27. K. Jensen, V. M. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centres in diamond,” Phys. Rev. B 87, 014115 (2013).
    [Crossref]

2016 (2)

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

2015 (3)

I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
[Crossref]

H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
[Crossref]

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

2014 (5)

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
[Crossref] [PubMed]

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centres in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65, 83–105 (2014).
[Crossref]

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

A. Al Mohtar, J. Vaillant, Z. Sedaghat, M. Kazan, L. Joly, C. Stoeffler, J. Cousin, A. Khoury, and A. Bruyant, “Generalised lock-in detection for interferometry: application to phase sensitive spectroscopy and near-field nanoscopy,” Opt. Express 22, 22232–22245 (2014)
[Crossref] [PubMed]

2013 (5)

K. Jensen, V. M. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centres in diamond,” Phys. Rev. B 87, 014115 (2013).
[Crossref]

N. Alsam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New Journal of Physics 15, 013064 (2013).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

N.M. Nusran and M. V. Gurudev Dutt, “Dual-channel lock-in magnetometer with a single spin diamond,” Phys. Rev. B 88, 220410 (2013).
[Crossref]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

2011 (4)

R. S. Schoenfeld and W. Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Phys. Rev. Lett. 106, 030802 (2011).
[Crossref] [PubMed]

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New Journal of Physics 13, 025013 (2011).
[Crossref]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, “Single-ion quantum lock-in amplifier,” Nature 473, 61–65 (2011).
[Crossref] [PubMed]

2009 (1)

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

2008 (2)

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

S. M. Salapaka and M. V. Salapaka, “Scanning probe microscopy,” IEEE Control Syst. Mag. 28, 65–83 (2008)
[Crossref]

2006 (1)

D. Robbes, “High sensitive magnetometers-a review,” Sensor Actuat. A-Phys. 129, 86–93 (2006).
[Crossref]

2003 (1)

I. K. Kominis, T. W. Kornak, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 442, 596–599 (2003).
[Crossref]

1957 (1)

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapour,” Phys. Rev. 107, 1559–1565 (1957).
[Crossref]

1946 (1)

R. H. Dicke, “The measurement of thermal radiation at microwave frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[Crossref] [PubMed]

1922 (1)

J. R. Carson, “Notes on the theory of modulation,” Proceedings of the Institute of Radio Engineers 10, 57–64 (1922).

Acosta, V. M.

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

K. Jensen, V. M. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centres in diamond,” Phys. Rev. B 87, 014115 (2013).
[Crossref]

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Afach, S.

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

Akerman, N.

S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, “Single-ion quantum lock-in amplifier,” Nature 473, 61–65 (2011).
[Crossref] [PubMed]

Al Mohtar, A.

Allred, J. C.

I. K. Kominis, T. W. Kornak, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 442, 596–599 (2003).
[Crossref]

Alsam, N.

N. Alsam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New Journal of Physics 15, 013064 (2013).
[Crossref]

Arcizet, O.

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

Barclay, P. E.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Barry, J. F.

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

Bauch, E.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Beausoleil, R. G.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Bell, W. E.

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapour,” Phys. Rev. 107, 1559–1565 (1957).
[Crossref]

Bernien, H.

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New Journal of Physics 13, 025013 (2011).
[Crossref]

Bloom, A. L.

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapour,” Phys. Rev. 107, 1559–1565 (1957).
[Crossref]

Bougas, L.

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

Braje, D.

H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
[Crossref]

Bruyant, A.

Budker, D.

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
[Crossref]

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

K. Jensen, V. M. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centres in diamond,” Phys. Rev. B 87, 014115 (2013).
[Crossref]

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Cappellaro, P.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Carson, J. R.

J. R. Carson, “Notes on the theory of modulation,” Proceedings of the Institute of Radio Engineers 10, 57–64 (1922).

Chang, K.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centres in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65, 83–105 (2014).
[Crossref]

Chemerisov, S.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Childress, L.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Clevenson, H.

H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
[Crossref]

Cousin, J.

Degen, C. L.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centres in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65, 83–105 (2014).
[Crossref]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Dicke, R. H.

R. H. Dicke, “The measurement of thermal radiation at microwave frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[Crossref] [PubMed]

Doherty, M. W.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Doronina-Amitonoa, L. V.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Dréau, A.

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

Dumiege, Y.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

Dural, N.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Englund, D.

H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
[Crossref]

Fedotov, A. B.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Fedotov, I. V.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Fu, K.-M. C.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Gawlik, W.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Glenn, D. R.

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

Glickman, Y.

S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, “Single-ion quantum lock-in amplifier,” Nature 473, 61–65 (2011).
[Crossref] [PubMed]

Gurudev Dutt, M. V.

N.M. Nusran and M. V. Gurudev Dutt, “Dual-channel lock-in magnetometer with a single spin diamond,” Phys. Rev. B 88, 220410 (2013).
[Crossref]

Hanson, R.

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New Journal of Physics 13, 025013 (2011).
[Crossref]

Harneit, W.

R. S. Schoenfeld and W. Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Phys. Rev. Lett. 106, 030802 (2011).
[Crossref] [PubMed]

Hemer, P. R.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Hingant, T.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
[Crossref] [PubMed]

Hollenberg, L. C. L.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Isoya, J.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Jacques, V.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
[Crossref] [PubMed]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

Jarmola, A.

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

K. Jensen, V. M. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centres in diamond,” Phys. Rev. B 87, 014115 (2013).
[Crossref]

Jelezko, F.

N. Alsam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New Journal of Physics 15, 013064 (2013).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Jensen, K.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

K. Jensen, V. M. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centres in diamond,” Phys. Rev. B 87, 014115 (2013).
[Crossref]

Jiang, L.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Joly, L.

Kazan, M.

Kehayias, P.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

Keselman, A.

S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, “Single-ion quantum lock-in amplifier,” Nature 473, 61–65 (2011).
[Crossref] [PubMed]

Khoury, A.

Kominis, I. K.

I. K. Kominis, T. W. Kornak, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 442, 596–599 (2003).
[Crossref]

Kornak, T. W.

I. K. Kominis, T. W. Kornak, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 442, 596–599 (2003).
[Crossref]

Kotler, S.

S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, “Single-ion quantum lock-in amplifier,” Nature 473, 61–65 (2011).
[Crossref] [PubMed]

Ledbetter, M. P.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Leefer, N.

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

Lesik, M.

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

Levchenko, A. O.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Li, S.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Linget, H.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Loretz, M.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centres in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65, 83–105 (2014).
[Crossref]

Lukin, M. D.

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Maletinsky, P.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
[Crossref] [PubMed]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Mateos, I.

I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
[Crossref]

Nakamura, K.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Neumann, P.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

N. Alsam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New Journal of Physics 15, 013064 (2013).
[Crossref]

Nusran, N.M.

N.M. Nusran and M. V. Gurudev Dutt, “Dual-channel lock-in magnetometer with a single spin diamond,” Phys. Rev. B 88, 220410 (2013).
[Crossref]

Ohshima, T.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Ozeri, R.

S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, “Single-ion quantum lock-in amplifier,” Nature 473, 61–65 (2011).
[Crossref] [PubMed]

Park, H.

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

Patton, B.

I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
[Crossref]

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

Ramos-Castro, J.

I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
[Crossref]

Robbes, D.

D. Robbes, “High sensitive magnetometers-a review,” Sensor Actuat. A-Phys. 129, 86–93 (2006).
[Crossref]

Robledo, L.

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New Journal of Physics 13, 025013 (2011).
[Crossref]

Roch, J. F.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Roch, J.-F.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
[Crossref] [PubMed]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

Romalis, M. V.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

I. K. Kominis, T. W. Kornak, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 442, 596–599 (2003).
[Crossref]

Rondin, L.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
[Crossref] [PubMed]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

Salapaka, M. V.

S. M. Salapaka and M. V. Salapaka, “Scanning probe microscopy,” IEEE Control Syst. Mag. 28, 65–83 (2008)
[Crossref]

Salapaka, S. M.

S. M. Salapaka and M. V. Salapaka, “Scanning probe microscopy,” IEEE Control Syst. Mag. 28, 65–83 (2008)
[Crossref]

Santori, C.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Sar, T. V. D.

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New Journal of Physics 13, 025013 (2011).
[Crossref]

Schirhagl, R.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centres in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65, 83–105 (2014).
[Crossref]

Schloss, J. M.

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

Schoenfeld, R. S.

R. S. Schoenfeld and W. Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Phys. Rev. Lett. 106, 030802 (2011).
[Crossref] [PubMed]

Schroder, T.

H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
[Crossref]

Sedaghat, Z.

Sheng, D.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Sidorov-Biryukov, D. A.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Song, Y.

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

Spinicelli, P.

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

Stoeffler, C.

Sumiya, H.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Taylor, J. M.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Teale, C.

H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
[Crossref]

Tetienne, J.-P.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
[Crossref] [PubMed]

Treussart, F.

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

Trusheim, M. E.

H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
[Crossref]

Turner, M. J.

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

Vaillant, J.

Velichansky, V. L.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Voronin, A. A.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Waldherr, G.

N. Alsam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New Journal of Physics 15, 013064 (2013).
[Crossref]

Walsworth, R.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Walsworth, R. L.

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

Wickenbrock, A.

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

Wolf, T.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Wrachtrup, J.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

N. Alsam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New Journal of Physics 15, 013064 (2013).
[Crossref]

Wurm, D.

I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
[Crossref]

Yacoby, A

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Zheltikov, A.M.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Zheng, H.

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

Zhivun, E.

I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
[Crossref]

Zibrov, S. A.

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Annu. Rev. Phys. Chem. (1)

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centres in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65, 83–105 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S. Afach, A. Jarmola, V. M. Acosta, and D. Budker, “Microwave-free magnetometry with nitrogen-vacancy centres in diamond,” Appl. Phys. Lett. 109, 053505 (2016).
[Crossref]

IEEE Control Syst. Mag. (1)

S. M. Salapaka and M. V. Salapaka, “Scanning probe microscopy,” IEEE Control Syst. Mag. 28, 65–83 (2008)
[Crossref]

Nat. Phys. (2)

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemer, A Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light trapping diamond waveguide,” Nat. Phys. 11, 393–397 (2015).
[Crossref]

Nature (2)

I. K. Kominis, T. W. Kornak, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 442, 596–599 (2003).
[Crossref]

S. Kotler, N. Akerman, Y. Glickman, A. Keselman, and R. Ozeri, “Single-ion quantum lock-in amplifier,” Nature 473, 61–65 (2011).
[Crossref] [PubMed]

New Journal of Physics (2)

N. Alsam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New Journal of Physics 15, 013064 (2013).
[Crossref]

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New Journal of Physics 13, 025013 (2011).
[Crossref]

Opt. Express (1)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy color centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Phys. Rev. (1)

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapour,” Phys. Rev. 107, 1559–1565 (1957).
[Crossref]

Phys. Rev. B (4)

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B 84, 195204 (2011).
[Crossref]

K. Jensen, V. M. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centres in diamond,” Phys. Rev. B 87, 014115 (2013).
[Crossref]

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, “Diamonds with a high density of nitrogen-vacancy centres for magnetometry applications,” Phys. Rev. B 80, 115202 (2009).
[Crossref]

N.M. Nusran and M. V. Gurudev Dutt, “Dual-channel lock-in magnetometer with a single spin diamond,” Phys. Rev. B 88, 220410 (2013).
[Crossref]

Phys. Rev. Lett. (3)

R. S. Schoenfeld and W. Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Phys. Rev. Lett. 106, 030802 (2011).
[Crossref] [PubMed]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

K. Jensen, N. Leefer, A. Jarmola, Y. Dumiege, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centres in diamond,” Phys. Rev. Lett. 112, 160802 (2014).
[Crossref]

Phys. Rev. X (1)

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).

Proc. Natl. Acad. Sci. USA (1)

J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Natl. Acad. Sci. USA 113, 14133–14138 (2016).
[Crossref] [PubMed]

Proceedings of the Institute of Radio Engineers (1)

J. R. Carson, “Notes on the theory of modulation,” Proceedings of the Institute of Radio Engineers 10, 57–64 (1922).

Rep. Prog. Phys. (1)

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. H. Dicke, “The measurement of thermal radiation at microwave frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[Crossref] [PubMed]

Sci. Rep. (1)

I. V. Fedotov, L. V. Doronina-Amitonoa, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, “Electron spin manipulation and readout through an optical fibre,” Sci. Rep. 4, 5362 (2014).
[Crossref]

Sensor Actuat. A-Phys. (2)

I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, and J. Ramos-Castro, “Noise characterization of an atomic magnetometer at sub-millihertz frequencies,” Sensor Actuat. A-Phys. 224, 147–155 (2015).
[Crossref]

D. Robbes, “High sensitive magnetometers-a review,” Sensor Actuat. A-Phys. 129, 86–93 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A general level schematic of the NV system, used to set up the optical Bloch equations. The electronic structure is comprised of a triplet state (3A23E) and a singlet shelving state (1E1A1). The 3A2 state levels can be coherently driven with the application of a MW drive with a Rabi frequency Ω, while above band excitation is carried out with a rate Γ p , with the optical excitation processes being almost perfectly spin conserving. The spin levels are split with the introduction of a magnetic field, and couple with the nuclear spin of the N atom, generating an additional two or three hyperfine levels depending on the N isotope. These hyperfine levels are evident in cw-ODMR as shown in the measured spectra (b,i,ii) from an NV ensemble, where a weak magnetic field (~ 5 mT) has been applied to spectrally separate the distinct crystallographic sub-groups. The dotted blue lines are fits using equation (4) with the parameters Γ p /2π ≃ 20 kHz, Ω/2π ≃ 30 kHz, and γ 2 * / 2 π 700 kHz for 14N, and Γ p /2π ≃ 50 kHz, Ω/2π ≃ 100 kHz, and γ 2 * / 2 π 1 MHz for 15N.

Fig. 2
Fig. 2

(a) Schematic of the experimental setup and the two-channel lock-in detector. (b) Measured spectrum of an ensemble of 14NV showing (i) in-phase X lock-in spectrum using a amplitude modulated MW field and plotted in terms of the measured fluorescence contrast, (ii) X lock-in spectrum spectrum using sine-wave single-frequency modulation, and (iii) three-frequency excitation of all hyperfine lines. (c) The Fourier spectrum for (i) B#(t) (10) and (ii) B~(t) (9) as a function of modulation depth Δω, for a fixed modulation frequency ν. The amplitude scale has been reduced to highlight the presence and distribution of peaks in the case of B~(t).

Fig. 3
Fig. 3

Experimental and simulated two-dimensional plots of XFM(ωc, Δω) for (a) sine-wave modulated drive and (b) square-wave modulated drive, shown besides their first-order derivative. (c) Experimental and theoretical values of max{|dω XFM(ωc)} as a function of Δω for both modulation functions. The simulation parameters used for these Figs. are Γ p /2π ≃ 150 kHz, Ω/2π ≃ 300 kHz, and γ 2 * / 2 π 500 kHz .

Fig. 4
Fig. 4

Experimental and simulated two-dimensional plots of X A ( ω c , Δ ω ) for (a) sine-wave modulated drive and (b) square-wave modulated drive, shown besides their first-order derivative. (c) Experimental and theoretical values of max { | d ω X A ( ω c ) | } as a function of Δω for both modulation functions. The simulation parameters used for these Figs. are Γ p /2π ≃ 150 kHz, Ω/2π ≃ 100 kHz, and γ 2 * / 2 π 500 kHz .

Fig. 5
Fig. 5

(a) Simulation of the steepest slope of expression (4) as a function of Rabi frequency Ω and optical excitation rate Γ p for γ 2 * / 2 π 500 kHz and k21/2π = 1 kHz. The parameters for the maximum slope, designated by a star, are used for the simulations in (b), which show the normalised maximum slope for single frequency excitation as a function of ξ and modulation depth Δω for sine ( X ~ F M ) and square ( X # F M ) wave modulation for both NV isotopes.

Fig. 6
Fig. 6

Comparison of simulated max{|dωX#|} for single- and three-frequency excitation of an ensemble of 14NV, using two different ξ values. The normalisation is with respect to the maximum simulated slope, and the ξ values correspond to a linewidth of ~ 0.5 MHz and ~ 1.6 MHz.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

^ / = i 5 ω i | i i | Ω cos ( ω c t ) ( | 1 2 | + | 2 1 | ) .
ρ ˙ 11 = Γ p ρ 11 + k 31 ρ 33 + k 41 ρ 44 + k 51 ρ 55 k 21 2 ( ρ 11 ρ 22 ) i 2 Ω ( ρ 12 ρ 21 ) , ρ ˙ 22 = Γ p ρ 22 + k 32 ρ 33 + k 42 ρ 44 + k 52 ρ 55 k 21 2 ( ρ 22 ρ 11 ) + i 2 Ω ( ρ 12 ρ 21 ) , ρ ˙ 33 = Γ p ρ 11 ( k 35 + k 32 + k 31 ) ρ 33 , ρ ˙ 44 = Γ p ρ 22 ( k 45 + k 42 + k 41 ) ρ 44 , ρ ˙ 55 = k 45 ρ 44 + k 35 ρ 33 ( k 52 + k 51 ) ρ 55 , ρ ˙ 12 = ( γ 2 i δ ) ρ 12 + i 2 Ω ( ρ 22 ρ 11 ) , ρ ˙ 21 = ( γ 2 + i δ ) ρ 21 i 2 Ω ( ρ 22 ρ 11 ) ,
c w = ( k 31 + k 32 ) ρ 33 s s k 31 + k 32 + k 35 + ( k 41 + k 42 ) ρ 44 s s k 41 + k 42 + k 45 .
S c w ( ω c ) = R 0 m I c w ( δ + m I 2 π A ) ,
S c w ( ω c , t ) = 1 2 S c w ( ω c ) + 1 4 S c w ( ω c ) [ e i ( 2 π ν t + φ s ) + e i ( 2 π ν t + φ s ) ] ,
S L I ( ω c ) = A S c w ( ω c ) 2 τ τ / 2 τ / 2 ( e i ϕ + e i ( 4 π ν t + φ s + φ r ) ) d t ,
X = 1 2 A S c w ( ω c ) cos ( ϕ ) ,
Y = 1 2 A S c w ( ω c ) sin ( ϕ ) .
B ~ ( t ) = cos ( ω c t + β sin ( 2 π ν t ) ) = n = + J n ( β ) cos ( ω c t + n 2 π ν t ) ,
B # ( t ) = cos ( ω c t + Δ ω sgn [ cos ( 2 π ν t ) ] t ) ,
X # F M ( ω c ) A 2 ( S c w ( ω c + Δ ω ) S c w ( ω c Δ ω ) ) ,
X ~ F M ( ω c ) A 2 n = 0 β / 2 J n ( β ) ( S c w ( ω c + n 2 π ν ) S c w ( ω c n 2 π ν ) ) .
X A ( ω c ) m x X F M ( ω c + m x 2 π A ) .
c w = Γ p ( k 31 + k 32 ) K 3 2 [ 1 + Ξ + Γ p K 3 + Γ p Ξ K 4 + k 35 Γ p K 3 K 5 + k 45 Γ p Ξ K 5 K 4 ] 1 + Γ p ( k 41 + k 42 ) K 4 2 [ 1 + 1 Ξ + Γ p K 4 + Γ p K 3 Ξ + k 45 Γ p K 4 K 5 + k 35 Γ p K 5 K 3 Ξ ] 1 ,
Ξ = [ ( k 21 2 ) + ( Γ p ( k 32 K 5 + k 52 k 35 ) K 3 K 5 ) + ( Ω 2 γ 2 2 ( γ 2 2 + Δ 2 ) ) ] [ Γ p + ( k 21 2 ) ( Γ p ( k 42 K 5 + k 52 k 45 ) K 4 K 5 ) + ( Ω 2 γ 2 2 ( γ 2 2 + Δ 2 ) ) ] ,
K 3 = k 31 + k 32 + k 35 , K 4 = k 41 + k 42 + k 45 , K 5 = k 51 + k 52 ,

Metrics