Abstract

In this work, we present a novel kind of LC mixture (5005) for photonic applications, with emphasis on a LC microlens array. This mixture is a nematic composition of three different families of rod like liquid crystals. The key is that frequency dependence of parallel component of electric permittivity is different for each component, resulting in a strongly dependent on frequency dielectric anisotropy. The unique properties of this LC mixture are demonstrated to work in a frequency modulated LC microlens array. A hole patterned structure is used. Thanks to the special characteristics of this mixture, the microlenses are reconfigurable by low voltage signals with variable frequency. This is a first demonstration of a LC lens with tunable focal length by frequency in an analog way. The result of this type of control are microlenses with low aberrations and fast switching (the frequency switching is around 10 times faster than amplitude modulation). The tunability with frequency and the fast switching, makes this liquid crystal of special interest not only for microlenses but for all kind of optical phase modulators.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High optical quality electrically variable liquid crystal lens using an additional floating electrode

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu
Opt. Lett. 41(14) 3265-3268 (2016)

All-fiber optic intensity modulators using liquid crystals

Z. K. Ioannidis, I. P. Giles, and C. Bowry
Appl. Opt. 30(3) 328-333 (1991)

Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal

Xiao-Qian Wang, Wei-Qiang Yang, Zhen Liu, Wei Duan, Wei Hu, Zhi-Gang Zheng, Dong Shen, Vladimir G. Chigrinov, and Hoi-Sing Kwok
Opt. Mater. Express 7(1) 8-15 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
    [Crossref]
  2. J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
    [Crossref]
  3. J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
    [Crossref] [PubMed]
  4. J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
    [Crossref] [PubMed]
  5. J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
    [Crossref]
  6. J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
    [Crossref] [PubMed]
  7. J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
    [Crossref] [PubMed]
  8. P. J. Pinzón, I. Pérez, C. Vázquez, and J. M. Sánchez Pena, “Reconfigurable 1×2 wavelength selective switch using high birefringence nematic liquid crystals,” Appl. Opt. 51(25), 5960–5965 (2012).
    [Crossref] [PubMed]
  9. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref] [PubMed]
  10. Y.-H. Lin and M.-S. Chen, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
    [Crossref]
  11. H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  12. Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
    [Crossref]
  13. A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
    [Crossref] [PubMed]
  14. Pixeloptics, Adjustable electro-active optical system and uses thereof, US patent 20140204333 A1 (2014).
  15. Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  16. D. W. Berreman, Variable-focus LC-lens system, Bell Telephone Laboratories, United States patent US 4190330, 1980.
  17. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  18. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
    [Crossref]
  19. J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
    [Crossref]
  20. G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” InOpto-electronics Symposium SPIE 1168 (1989).
  21. G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
    [Crossref]
  22. M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
    [Crossref]
  23. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [Crossref] [PubMed]
  24. H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
    [Crossref]
  25. H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
    [Crossref]
  26. R. Rajasekharan, Q. Dai, H. Butt, K. Won, T. D. Wilkinson, and G. A. J. Amaratunga, “Optimization of nanotube electrode geometry in a liquid crystal media from wavefront aberrations,” Appl. Opt. 51(4), 422–428 (2012).
    [Crossref] [PubMed]
  27. S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  28. H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
    [Crossref]
  29. S. Qiong, Fast Response Dual Frequency Liquid Crystal Materials, Electronic Theses and Dissertations 4221, (2010). http://stars.library.ucf.edu/etd/4221/
  30. H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
    [Crossref]
  31. M. Schadt, “Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 77–92 (1982).
    [Crossref]
  32. Y.-H. Lin, J.-M. Yang, S.-T. Wu, C.-C. Liao, “Polarizer-free liquid crystal displays,” Optical Fiber Communication and Optoelectronics Conference 2007 Asia, 31–33 (2007).
  33. J. S. Hsu, B. J. Liang, and S. H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
    [Crossref]
  34. X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
    [Crossref]
  35. X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
    [Crossref]
  36. Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
    [Crossref]
  37. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [Crossref] [PubMed]
  38. S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(1), 480 (2000).
  39. Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
    [Crossref]
  40. H. Xianyu, S. Gauza, and S.-T. Wu, “Sub‐millisecond response phase modulator using a low crossover frequency dual‐frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
    [Crossref]
  41. J. F. Algorri, Adaptive micro-optical phase modulators based on liquid crystal technology, (2015), http://e-archivo.uc3m.es/handle/10016/21765 .
  42. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (WILEY-VCH Verlag GmbH, 2007).
  43. G. Meier and A. Saupe, “Dielectric Relaxation in Nematic Liquid Crystals,” Mol. Cryst. 1(4), 515–525 (1966).
    [Crossref]
  44. Electrochemical Measurement System, Hardware Operator’s Manual (Gamry Instruments, 2005).
  45. P. Kula, A. Aptacy, J. Herman, W. Wójciak, and S. Urban, “The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls,” Liq. Cryst. 40(4), 482–491 (2013).
    [Crossref]
  46. P. Kula, J. Dziaduszek, J. Herman, and R. Dąbrowski, “9.4: Invited Paper: Highly Birefringent Nematic Liquid Crystals and Mixtures,” inSID Symposium Digest of Technical Papers, 100–103 (2014).
    [Crossref]
  47. R. Dąbrowski, P. Kula, and J. Herman, “High Birefringence Liquid Crystals,” Crystals 3(3), 443–482 (2013).
    [Crossref]
  48. D. Węgłowsk, P. Kula, and J. Herman, “High birefringence bistolane liquid crystals: synthesis and properties,” RSC Advances 6(1), 403–408 (2016).
    [Crossref]
  49. J. Herman and P. Kula, “Design of new super-high birefringent isothiocyanato bistolanes – synthesis and properties,” Liq. Cryst. 0, 1–6 (2017).
    [Crossref]
  50. D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
    [Crossref]
  51. V. Urruchi, J. F. Algorri, J. M. Sánchez-Pena, M. A. Geday, X. Quintana, and N. Bennis, “Lenticular Arrays Based on Liquid Crystals,” Opto-Electron. Rev. 20(3), 38–44 (2012).
  52. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
    [Crossref]
  53. F. Peng, F. Gou, H. Chen, Y. Huang, and S.-T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
    [Crossref]
  54. S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6(6), 471–485 (1999).
    [Crossref]

2017 (1)

J. Herman and P. Kula, “Design of new super-high birefringent isothiocyanato bistolanes – synthesis and properties,” Liq. Cryst. 0, 1–6 (2017).
[Crossref]

2016 (2)

F. Peng, F. Gou, H. Chen, Y. Huang, and S.-T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

D. Węgłowsk, P. Kula, and J. Herman, “High birefringence bistolane liquid crystals: synthesis and properties,” RSC Advances 6(1), 403–408 (2016).
[Crossref]

2015 (4)

2014 (4)

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

2013 (5)

J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref] [PubMed]

Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

P. Kula, A. Aptacy, J. Herman, W. Wójciak, and S. Urban, “The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls,” Liq. Cryst. 40(4), 482–491 (2013).
[Crossref]

R. Dąbrowski, P. Kula, and J. Herman, “High Birefringence Liquid Crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

2012 (6)

2010 (1)

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

2009 (3)

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[Crossref] [PubMed]

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

2008 (3)

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
[Crossref]

Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub‐millisecond response phase modulator using a low crossover frequency dual‐frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

2006 (3)

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
[Crossref]

2005 (1)

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[Crossref]

2004 (2)

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

J. S. Hsu, B. J. Liang, and S. H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

2003 (1)

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

2000 (3)

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[Crossref]

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(1), 480 (2000).

1999 (1)

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

1989 (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

1982 (1)

M. Schadt, “Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 77–92 (1982).
[Crossref]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

1974 (1)

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[Crossref]

1966 (1)

G. Meier and A. Saupe, “Dielectric Relaxation in Nematic Liquid Crystals,” Mol. Cryst. 1(4), 515–525 (1966).
[Crossref]

Algorri, J. F.

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref] [PubMed]

V. Urruchi, J. F. Algorri, J. M. Sánchez-Pena, M. A. Geday, X. Quintana, and N. Bennis, “Lenticular Arrays Based on Liquid Crystals,” Opto-Electron. Rev. 20(3), 38–44 (2012).

Amaratunga, G. A. J.

An, Z.

Aptacy, A.

P. Kula, A. Aptacy, J. Herman, W. Wójciak, and S. Urban, “The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls,” Liq. Cryst. 40(4), 482–491 (2013).
[Crossref]

Belopukhov, V. N.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Bennis, N.

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

V. Urruchi, J. F. Algorri, J. M. Sánchez-Pena, M. A. Geday, X. Quintana, and N. Bennis, “Lenticular Arrays Based on Liquid Crystals,” Opto-Electron. Rev. 20(3), 38–44 (2012).

Bücher, H. K.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[Crossref]

Butt, H.

Chang, K.-H.

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

Chen, H.

F. Peng, F. Gou, H. Chen, Y. Huang, and S.-T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

Chen, H.-S.

Chen, M.-S.

H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Y.-H. Lin and M.-S. Chen, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

Chen, S. H.

J. S. Hsu, B. J. Liang, and S. H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

Clark, M. G.

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” InOpto-electronics Symposium SPIE 1168 (1989).

Collings, N.

Czub, J.

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

Dabrowski, R.

R. Dąbrowski, P. Kula, and J. Herman, “High Birefringence Liquid Crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

P. Kula, J. Dziaduszek, J. Herman, and R. Dąbrowski, “9.4: Invited Paper: Highly Birefringent Nematic Liquid Crystals and Mixtures,” inSID Symposium Digest of Technical Papers, 100–103 (2014).
[Crossref]

Dai, H. T.

Dai, Q.

Date, M.

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(1), 480 (2000).

Du, F.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[Crossref]

Dziaduszek, J.

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

P. Kula, J. Dziaduszek, J. Herman, and R. Dąbrowski, “9.4: Invited Paper: Highly Birefringent Nematic Liquid Crystals and Mixtures,” inSID Symposium Digest of Technical Papers, 100–103 (2014).
[Crossref]

Fan, Y.-H.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Filipowicz, M.

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

Garcia-Camara, B.

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

Garcia-Cámara, B.

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

Gauza, S.

Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub‐millisecond response phase modulator using a low crossover frequency dual‐frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

Ge, Z.

Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

Geday, M. A.

V. Urruchi, J. F. Algorri, J. M. Sánchez-Pena, M. A. Geday, X. Quintana, and N. Bennis, “Lenticular Arrays Based on Liquid Crystals,” Opto-Electron. Rev. 20(3), 38–44 (2012).

Gou, F.

F. Peng, F. Gou, H. Chen, Y. Huang, and S.-T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

Hassanfiroozi, A.

Herman, J.

J. Herman and P. Kula, “Design of new super-high birefringent isothiocyanato bistolanes – synthesis and properties,” Liq. Cryst. 0, 1–6 (2017).
[Crossref]

D. Węgłowsk, P. Kula, and J. Herman, “High birefringence bistolane liquid crystals: synthesis and properties,” RSC Advances 6(1), 403–408 (2016).
[Crossref]

R. Dąbrowski, P. Kula, and J. Herman, “High Birefringence Liquid Crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

P. Kula, A. Aptacy, J. Herman, W. Wójciak, and S. Urban, “The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls,” Liq. Cryst. 40(4), 482–491 (2013).
[Crossref]

P. Kula, J. Dziaduszek, J. Herman, and R. Dąbrowski, “9.4: Invited Paper: Highly Birefringent Nematic Liquid Crystals and Mixtures,” inSID Symposium Digest of Technical Papers, 100–103 (2014).
[Crossref]

Hsu, J. S.

J. S. Hsu, B. J. Liang, and S. H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

Hu, M.

Huang, L.-S.

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Huang, Y.

F. Peng, F. Gou, H. Chen, Y. Huang, and S.-T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

Huang, Y.-P.

Javidi, B.

Jiao, M.

Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

Klingbiel, R. T.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[Crossref]

Kula, P.

J. Herman and P. Kula, “Design of new super-high birefringent isothiocyanato bistolanes – synthesis and properties,” Liq. Cryst. 0, 1–6 (2017).
[Crossref]

D. Węgłowsk, P. Kula, and J. Herman, “High birefringence bistolane liquid crystals: synthesis and properties,” RSC Advances 6(1), 403–408 (2016).
[Crossref]

R. Dąbrowski, P. Kula, and J. Herman, “High Birefringence Liquid Crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

P. Kula, A. Aptacy, J. Herman, W. Wójciak, and S. Urban, “The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls,” Liq. Cryst. 40(4), 482–491 (2013).
[Crossref]

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

P. Kula, J. Dziaduszek, J. Herman, and R. Dąbrowski, “9.4: Invited Paper: Highly Birefringent Nematic Liquid Crystals and Mixtures,” inSID Symposium Digest of Technical Papers, 100–103 (2014).
[Crossref]

Kuo, C.-T.

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lavrentovich, O. D.

Li, J.

Liang, B. J.

J. S. Hsu, B. J. Liang, and S. H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

Liang, X.

X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
[Crossref]

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Lin, C.-H.

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, C.-L.

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

Lin, H.-C.

Lin, S.-H.

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, Y.-H.

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Y.-H. Lin and M.-S. Chen, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Liu, Y. J.

Loktev, M. Y.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Love, G. D.

J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref] [PubMed]

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[Crossref]

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Lu, Y.-Q.

X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
[Crossref]

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[Crossref]

Luo, D.

Meier, G.

G. Meier and A. Saupe, “Dielectric Relaxation in Nematic Liquid Crystals,” Mol. Cryst. 1(4), 515–525 (1966).
[Crossref]

Naumov, A. F.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[Crossref]

Nevskaya, G. E.

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
[Crossref]

Nie, X.

X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
[Crossref]

Nose, T.

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

Otón, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

Parka, J.

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

Peng, F.

F. Peng, F. Gou, H. Chen, Y. Huang, and S.-T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

Pérez, I.

Pinzón, P. J.

Pishnyak, O.

Powell, N.

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” InOpto-electronics Symposium SPIE 1168 (1989).

Purvis, A.

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” InOpto-electronics Symposium SPIE 1168 (1989).

Quintana, X.

V. Urruchi, J. F. Algorri, J. M. Sánchez-Pena, M. A. Geday, X. Quintana, and N. Bennis, “Lenticular Arrays Based on Liquid Crystals,” Opto-Electron. Rev. 20(3), 38–44 (2012).

Rajasekharan, R.

Ren, H.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Sánchez Pena, J. M.

Sánchez-Pena, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

V. Urruchi, J. F. Algorri, J. M. Sánchez-Pena, M. A. Geday, X. Quintana, and N. Bennis, “Lenticular Arrays Based on Liquid Crystals,” Opto-Electron. Rev. 20(3), 38–44 (2012).

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Saupe, A.

G. Meier and A. Saupe, “Dielectric Relaxation in Nematic Liquid Crystals,” Mol. Cryst. 1(4), 515–525 (1966).
[Crossref]

Schadt, M.

M. Schadt, “Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 77–92 (1982).
[Crossref]

Shieh, H.-P. D.

Song, Q.

Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

Sun, X. W.

Suyama, S.

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(1), 480 (2000).

Takada, H.

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(1), 480 (2000).

Takahashi, S.

Tomilin, M. G.

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
[Crossref]

Tsou, Y.-S.

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

Uchida, M.

Urban, S.

P. Kula, A. Aptacy, J. Herman, W. Wójciak, and S. Urban, “The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls,” Liq. Cryst. 40(4), 482–491 (2013).
[Crossref]

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

Urruchi, V.

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref] [PubMed]

V. Urruchi, J. F. Algorri, J. M. Sánchez-Pena, M. A. Geday, X. Quintana, and N. Bennis, “Lenticular Arrays Based on Liquid Crystals,” Opto-Electron. Rev. 20(3), 38–44 (2012).

VanMeter, J. P.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[Crossref]

Vázquez, C.

Vdovin, G. V.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Vladimirov, F. L.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Wang, B.

Wang, H.-Y.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[Crossref]

Weglowsk, D.

D. Węgłowsk, P. Kula, and J. Herman, “High birefringence bistolane liquid crystals: synthesis and properties,” RSC Advances 6(1), 403–408 (2016).
[Crossref]

Wilkinson, T. D.

Williams, G.

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” InOpto-electronics Symposium SPIE 1168 (1989).

Wójciak, W.

P. Kula, A. Aptacy, J. Herman, W. Wójciak, and S. Urban, “The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls,” Liq. Cryst. 40(4), 482–491 (2013).
[Crossref]

Won, K.

Wu, S. T.

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
[Crossref]

Wu, S.-T.

F. Peng, F. Gou, H. Chen, Y. Huang, and S.-T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub‐millisecond response phase modulator using a low crossover frequency dual‐frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Wu, T. X.

X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
[Crossref]

Wu, Y.-H.

X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
[Crossref]

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[Crossref]

Xianyu, H.

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub‐millisecond response phase modulator using a low crossover frequency dual‐frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

Yanase, S.

Ye, M.

Ziobro, D.

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (6)

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[Crossref]

J. S. Hsu, B. J. Liang, and S. H. Chen, “Bistable chiral tilted-homeotropic nematic liquid crystal cells,” Appl. Phys. Lett. 85(23), 5511–5513 (2004).
[Crossref]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Crystals (1)

R. Dąbrowski, P. Kula, and J. Herman, “High Birefringence Liquid Crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

IEEE Electron Device Lett. (2)

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. Appl. Phys. (1)

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

J. Disp. Technol. (1)

Y.-H. Lin and M.-S. Chen, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

J. Opt. Tech. (1)

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
[Crossref]

J. Soc. Inf. Disp. (1)

F. Peng, F. Gou, H. Chen, Y. Huang, and S.-T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

Jpn. J. Appl. Phys. (3)

S. Suyama, M. Date, and H. Takada, “Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens,” Jpn. J. Appl. Phys. 39(1), 480 (2000).

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-Frequency Addressed Variable Optical Attenuator with Submillisecond Response Time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[Crossref]

Liq. Cryst. (5)

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6-7), 717–726 (2009).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

H. Xianyu, S. Gauza, and S.-T. Wu, “Sub‐millisecond response phase modulator using a low crossover frequency dual‐frequency liquid crystal,” Liq. Cryst. 35(12), 1409–1413 (2008).
[Crossref]

P. Kula, A. Aptacy, J. Herman, W. Wójciak, and S. Urban, “The synthesis and properties of fluoro-substituted analogues of 4-butyl-4′-[(4-butylphenyl)ethynyl]biphenyls,” Liq. Cryst. 40(4), 482–491 (2013).
[Crossref]

J. Herman and P. Kula, “Design of new super-high birefringent isothiocyanato bistolanes – synthesis and properties,” Liq. Cryst. 0, 1–6 (2017).
[Crossref]

Liq. Cryst. Today (1)

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[Crossref]

Materials (Basel) (1)

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

Mol. Cryst. (1)

G. Meier and A. Saupe, “Dielectric Relaxation in Nematic Liquid Crystals,” Mol. Cryst. 1(4), 515–525 (1966).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (3)

Q. Song, M. Jiao, Z. Ge, H. Xianyu, S. Gauza, and S.-T. Wu, “High birefringence and low crossover frequency dual frequency liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 179–189 (2008).
[Crossref]

X. Nie, T. X. Wu, Y.-Q. Lu, Y.-H. Wu, X. Liang, and S. T. Wu, “Dual-Frequency Addressed Infrared Liquid Crystal Phase Modulators with Submillisecond Response Time,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454(1), 123–133 (2006).
[Crossref]

M. Schadt, “Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 77–92 (1982).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Rev. (1)

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

Opto-Electron. Rev. (2)

D. Ziobro, P. Kula, J. Dziaduszek, M. Filipowicz, R. Dąbrowski, J. Parka, J. Czub, S. Urban, and S. T. Wu, “Mesomorphic and dielectric properties of esters useful for formulation of nematic mixtures for dual frequency addressing system,” Opto-Electron. Rev. 17(1), 16–19 (2009).
[Crossref]

V. Urruchi, J. F. Algorri, J. M. Sánchez-Pena, M. A. Geday, X. Quintana, and N. Bennis, “Lenticular Arrays Based on Liquid Crystals,” Opto-Electron. Rev. 20(3), 38–44 (2012).

Rev. Sci. Instrum. (1)

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

RSC Advances (1)

D. Węgłowsk, P. Kula, and J. Herman, “High birefringence bistolane liquid crystals: synthesis and properties,” RSC Advances 6(1), 403–408 (2016).
[Crossref]

Sensors (Basel) (1)

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

Other (9)

D. W. Berreman, Variable-focus LC-lens system, Bell Telephone Laboratories, United States patent US 4190330, 1980.

Pixeloptics, Adjustable electro-active optical system and uses thereof, US patent 20140204333 A1 (2014).

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” InOpto-electronics Symposium SPIE 1168 (1989).

S. Qiong, Fast Response Dual Frequency Liquid Crystal Materials, Electronic Theses and Dissertations 4221, (2010). http://stars.library.ucf.edu/etd/4221/

Y.-H. Lin, J.-M. Yang, S.-T. Wu, C.-C. Liao, “Polarizer-free liquid crystal displays,” Optical Fiber Communication and Optoelectronics Conference 2007 Asia, 31–33 (2007).

J. F. Algorri, Adaptive micro-optical phase modulators based on liquid crystal technology, (2015), http://e-archivo.uc3m.es/handle/10016/21765 .

D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (WILEY-VCH Verlag GmbH, 2007).

Electrochemical Measurement System, Hardware Operator’s Manual (Gamry Instruments, 2005).

P. Kula, J. Dziaduszek, J. Herman, and R. Dąbrowski, “9.4: Invited Paper: Highly Birefringent Nematic Liquid Crystals and Mixtures,” inSID Symposium Digest of Technical Papers, 100–103 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Depiction of a LC molecule. The three relaxation modes for the rotational movement of the LC molecule related to three different frequencies (f2, f3, f4).

Fig. 2
Fig. 2

Typical spectra of real permittivity (ordinary and extraordinary components) for nematic LC in a frequency range from 10Hz to 1GHz. Characteristic dispersion ranges.

Fig. 3
Fig. 3

Components of 5005 nematic material. (a) Fluorine substituted alkyl-alkyl phenyl-tolanes, (b) alkyl-alkyl bistolanes and (c) fluorine substituted 4-[(4-cyanophenoxy)carbonyl]phenyl 4-alkylbenzoates.

Fig. 4
Fig. 4

Square driving waveform for impedance measurements. The small AC signal probe (red and blue signals) have been set on a high bias (offset) DC voltage (A is the DC offset). The result is that the DC voltage, is seen by the LC as a low frequency (0.5 Hz) AC square signal.

Fig. 5
Fig. 5

(Left) Amplitude Modulation (AM) example. The characteristics are, a 100% depth modulation from 0 to a variable voltage V and a frequency of 1 kHz. (Right) Frequency Shift Key (FSK) signal example (two possible frequencies). Modulation from 40 kHz (mark frequency) to variable frequency F (space frequency), and fixed amplitude (4 VRMS).

Fig. 6
Fig. 6

Experimental set-up for characterizing the LC switching properties. The sample is placed between crossed polarizers.

Fig. 7
Fig. 7

Experimental set-up for characterizing tunable LC spherical microlens arrays. The sample is placed between crossed polarizers.

Fig. 8
Fig. 8

(Left) Dispersion of the ordinary and extraordinary dielectric constants. (Right) dielectric anisotropy.

Fig. 9
Fig. 9

Rise time for (left) 1 kHz and variable voltage and (right) 4 VRMS and variable frequency.

Fig. 10
Fig. 10

Fringe patterns measured between crossed polarizers for (a) 1.5 VRMS, (b) 2 VRMS, (c) 2.5 VRMS, (d) 3 VRMS, (e) 3.5 VRMS, (f) 4 VRMS.

Fig. 11
Fig. 11

Fringe patterns measured between crossed polarizers for (a) 2 kHz, (b) 4 kHz, (c) 6 kHz, (d) 8 kHz, (e) 10 kHz, (f) 15 kHz.

Fig. 12
Fig. 12

Phase profiles for (left) frequency control, 4 VRMS and variable frequency, and (right) voltage control, 1 kHz and variable voltage.

Fig. 13
Fig. 13

Focal distance for (left) 1 kHz and variable voltage and (right) 4 VRMS and variable frequency.

Metrics