Abstract

A novel method of beam steering enables a large field of view and reliable single chip light detection and ranging (lidar) by utilizing a mass-produced digital micromirror device (DMD). Using a short pulsed laser, the micromirrors’ rotation is frozen in mid-transition, which forms a programmable blazed grating. The blazed grating efficiently redistributes the light to a single diffraction order, among several. We demonstrated time of flight measurements for five discrete angles using this beam steering method with a nano second 905nm laser and Si avalanche diode. A distance accuracy of < 1 cm over a 1 m distance range, a 48° full field of view, and a measurement rate of 3.34k points/s is demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Control of solid-state lasers using an intra-cavity MEMS micromirror

Walter Lubeigt, Joao Gomes, Gordon Brown, Andrew Kelly, Vasili Savitski, Deepak Uttamchandani, and David Burns
Opt. Express 19(3) 2456-2465 (2011)

Large aperture at low cost three-dimensional time-of-flight range sensor using scanning micromirrors and synchronous detector switching

Siegwart Bogatscher, Andreas Streck, Maik Fox, Sebastian Meinzer, Nico Heussner, and Wilhelm Stork
Appl. Opt. 53(8) 1570-1582 (2014)

Photon-counting compressive sensing laser radar for 3D imaging

G. A. Howland, P. B. Dixon, and J. C. Howell
Appl. Opt. 50(31) 5917-5920 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. C. Stone, M. Juberts, N. G. Dagalakis, J. A. Stone Jr., J. J. Gorman, “Performance Analysis of Next-Generation LADAR for Manufacturing, Construction, and Mobility,” NIST Interagency/Internal Report (NISTIR) – 7117, (2004).
  2. A. R. Cho, A. Han, S. Ju, H. Jeong, J. H. Park, I. Kim, J. U. Bu, and C. H. Ji, “Electromagnetic biaxial microscanner with mechanical amplification at resonance,” Opt. Express 23(13), 16792–16802 (2015).
    [Crossref] [PubMed]
  3. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
    [Crossref] [PubMed]
  4. C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, “Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas,” Opt. Express 21(4), 5198–5208 (2013).
    [Crossref] [PubMed]
  5. R. Dou and M. K. Giles, “Programmable phase grating and beam steerer by operating a LCTV,” Proc. SPIE 2566, 26 (1995).
  6. S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).
  7. E. Ackerman, “Quanergy Announces $250 Solid-State LIDAR for Cars, Robots, and More,” IEEE Spectr. , 7 (2016).
  8. A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).
  9. Mirrocle Technologies Inc., “Mirrorcle Technologies MEMS Mirrors – Technical Overview,” Gimbal-les Two-Axis Scanning Micromirror Devices technical overview, 2016.
  10. T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
    [Crossref]
  11. R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
    [Crossref]
  12. X. Lee and C. Wang, “Optical design for uniform scanning in MEMS-based 3D imaging lidar,” Appl. Opt. 54(9), 2219–2223 (2015).
    [Crossref] [PubMed]
  13. Texas Instruments, “DLPTM System Optics,” Application Report, July 2010.
  14. T. Kaeriyama, Damped Control of a Micromechanical Device, U.S. Patent Application No. 10/749,432, filed December 31, 2003.
  15. J. D. Gaskil, Linear Systems, Fourier Transforms, and Optics (John Wiley & Sons, Inc., 1987), Chap. 10.
  16. Texas Instruments, “Wavelength Transmittance Considerations for DLP® DMD Window,” Application Report, May 2012 revised March 2014.
  17. P. McManamon, Field Guide to Lidar (SPIE, 2015).
  18. R. Feeler and E. Stephens, “High Density Pulsed Laser Diode Arrays for SSL Pumping,” Northrop Grumman Cutting Edge Optronics Application Note 15, 2010.
  19. W. Smith, Modern Lens Design (McGraw-Hill Professional, 2004).
  20. Analog Modules, Inc., “High Sensitivity APD Optical Receiver,” Model 7510–1 Datasheet, May 2015.
  21. E. Technologies, “PGA Series of Single- and Multi-epi 905 nm Pulsed Semiconductor Lasers,” Datasheet Photon Detection, 2013.
  22. T. Instruments, “DLP9500 DLP(R) 0.95 1080p 2x LVDS Type A DMD,” (accessed 6 June 2017), www.ti.com .
  23. PulsedLight, Inc., “LIDAR-lite Operating Manual,” (accessed 13 Feb 2017), www.pulsedlight3d.com .

2015 (2)

2013 (1)

2012 (2)

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

2010 (1)

T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
[Crossref]

2001 (1)

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).

1995 (1)

R. Dou and M. K. Giles, “Programmable phase grating and beam steerer by operating a LCTV,” Proc. SPIE 2566, 26 (1995).

Ackerman, E.

E. Ackerman, “Quanergy Announces $250 Solid-State LIDAR for Cars, Robots, and More,” IEEE Spectr. , 7 (2016).

Anderson, M.

S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).

Aoyagi, I.

Bai, X.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Bright, V. M.

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).

Bu, J. U.

Chettiar, U.

Cho, A. R.

Dammann, J. F.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Davids, P. S.

Davis, S.

S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).

DeRose, C. T.

Dou, R.

R. Dou and M. K. Giles, “Programmable phase grating and beam steerer by operating a LCTV,” Proc. SPIE 2566, 26 (1995).

Engheta, N.

Farca, G.

S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).

Gerwig, C.

T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
[Crossref]

Giles, M. K.

R. Dou and M. K. Giles, “Programmable phase grating and beam steerer by operating a LCTV,” Proc. SPIE 2566, 26 (1995).

Giza, M. M.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Han, A.

Ito, K.

Jeong, H.

Ji, C. H.

Johnson, S.

S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).

Ju, S.

Kagami, M.

Kato, S.

Kekatpure, R. D.

Kim, I.

Lawler, W. B.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Lee, X.

Lee, Y. C.

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).

Matsubara, H.

Moss, R.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Neff, J. A.

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).

Niclass, C.

Park, J. H.

Quesada, E.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Rebolledo, N.

S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).

Rommel, S.

S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).

Sandner, T.

T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
[Crossref]

Schenk, H.

T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
[Crossref]

Schwarzer, S.

T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
[Crossref]

Selwyn, S.

S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).

Soga, M.

Stann, B. L.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Starbuck, A.

Sudharsanan, R.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Trotter, D. C.

Tuantranont, A.

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).

Wang, C.

Watts, M. R.

Wendt, J. R.

Wildenhain, M.

T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
[Crossref]

Wölfelschneider, H.

T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
[Crossref]

Yaacobi, A.

Yuan, P.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Zhang, J.

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).

Zhang, W.

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).

Appl. Opt. (1)

Opt. Express (3)

Proc. SPIE (3)

R. Dou and M. K. Giles, “Programmable phase grating and beam steerer by operating a LCTV,” Proc. SPIE 2566, 26 (1995).

T. Sandner, M. Wildenhain, C. Gerwig, H. Schenk, S. Schwarzer, and H. Wölfelschneider, “Large aperture MEMS scanner module for 3D distance measurement,” Proc. SPIE 7594, 75940D (2010).
[Crossref]

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Sensor Actuat. A (1)

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, “Optical beam steering using MEMS-controllable microlens array,” Sensor Actuat. A 91(3), 363–373 (2001).

Other (15)

Mirrocle Technologies Inc., “Mirrorcle Technologies MEMS Mirrors – Technical Overview,” Gimbal-les Two-Axis Scanning Micromirror Devices technical overview, 2016.

S. Davis, S. Rommel, S. Johnson, G. Farca, N. Rebolledo, S. Selwyn, and M. Anderson, “Electro-optic steering of a laser beam,” SPIE Newsroom (2011).

E. Ackerman, “Quanergy Announces $250 Solid-State LIDAR for Cars, Robots, and More,” IEEE Spectr. , 7 (2016).

Texas Instruments, “DLPTM System Optics,” Application Report, July 2010.

T. Kaeriyama, Damped Control of a Micromechanical Device, U.S. Patent Application No. 10/749,432, filed December 31, 2003.

J. D. Gaskil, Linear Systems, Fourier Transforms, and Optics (John Wiley & Sons, Inc., 1987), Chap. 10.

Texas Instruments, “Wavelength Transmittance Considerations for DLP® DMD Window,” Application Report, May 2012 revised March 2014.

P. McManamon, Field Guide to Lidar (SPIE, 2015).

R. Feeler and E. Stephens, “High Density Pulsed Laser Diode Arrays for SSL Pumping,” Northrop Grumman Cutting Edge Optronics Application Note 15, 2010.

W. Smith, Modern Lens Design (McGraw-Hill Professional, 2004).

Analog Modules, Inc., “High Sensitivity APD Optical Receiver,” Model 7510–1 Datasheet, May 2015.

E. Technologies, “PGA Series of Single- and Multi-epi 905 nm Pulsed Semiconductor Lasers,” Datasheet Photon Detection, 2013.

T. Instruments, “DLP9500 DLP(R) 0.95 1080p 2x LVDS Type A DMD,” (accessed 6 June 2017), www.ti.com .

PulsedLight, Inc., “LIDAR-lite Operating Manual,” (accessed 13 Feb 2017), www.pulsedlight3d.com .

W. C. Stone, M. Juberts, N. G. Dagalakis, J. A. Stone Jr., J. J. Gorman, “Performance Analysis of Next-Generation LADAR for Manufacturing, Construction, and Mobility,” NIST Interagency/Internal Report (NISTIR) – 7117, (2004).

Supplementary Material (8)

NameDescription
» Visualization 1: AVI (5307 KB)      Collimated laser beam scanning
» Visualization 2: AVI (4244 KB)      Collimated LED scanning
» Visualization 3: MP4 (608 KB)      Diverging laser beam continuous scanning
» Visualization 4: MP4 (6213 KB)      Swinging object in +2 diffraction order
» Visualization 5: MP4 (4461 KB)      Swinging object in +1 diffraction order
» Visualization 6: MP4 (3764 KB)      Swinging object in 0 diffraction order
» Visualization 7: MP4 (4203 KB)      Swinging object in -1 diffraction order
» Visualization 8: MP4 (4218 KB)      Swinging object in -2 diffraction order

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Representation of the (a) DMD diamond pixel layout (Top View); (b) a mirror in the “on” position at + 12°; (c) a mirror in the “parked” position at 0° when the DMD is powered down; (d) a mirror in the “off” position at −12° (Side View).

Fig. 2
Fig. 2

Modeled OPL profile of a 5x5 mirror pattern. In this instance, the incidence angle is 3° and the micromirrors are fixed at −12°.

Fig. 3
Fig. 3

Results of MATLAB simulation of scanning with a 30° angle of incidence plane wave with wavelength of 905nm. Snapshots of a scan as well as a long exposure of the entire scan are shown. (a) cover glass reflectivity modeled as 4%. (b) cover glass reflectivity modeled as 23%.

Fig. 4
Fig. 4

Experimental component setup for beam steering

Fig. 5
Fig. 5

Timing diagram of beam steering method using Arduino microcontroller.

Fig. 6
Fig. 6

Progression of a scan across the five discrete diffraction orders using a collimated 8ns 905nm laser source. The upper five images are “snapshots” of the system as it scans from the −2 to + 2 diffraction orders, and the bottom image is a “long exposure” of the entire scan (see Visualization 1).

Fig. 7
Fig. 7

Progression of discrete beam steering using a quasi-collimated LED. The upper four images are “snapshots” of the scan progression and the lower image is a “long exposure” of the scan (see Visualization 2).

Fig. 8
Fig. 8

Progression of a scan using a laser beam focused onto a single DMD pixel. The upper five tiles are “snapshots” of the steered beam at five locations across the scan. The lower tile shows an “long exposure” of the entire scan (see Visualization 3).

Fig. 9
Fig. 9

Illustrations of (a) the optical setup used in 1D linescan lidar system and (b) the optical isolation scheme.

Fig. 10
Fig. 10

Block diagram of electrical components used in TOF circuitry.

Fig. 11
Fig. 11

Plots of the measured distances are shown for averages of (a) N = 1 and (b) N = 10.

Fig. 12
Fig. 12

Performance of the lidar system when making measurements in the 0th order. The range of this order is larger than the other orders because of the higher optical power in this order.

Fig. 13
Fig. 13

Representation of a captured movie of the lidar system capturing swinging pendulums placed in each of the five scanning diffraction orders. (a) through (e) correspond to −2 through + 2 diffraction orders respectively (see Visualization 4, Visualization 5, Visualization 6, Visualization 7, and Visualization 8).

Fig. 14
Fig. 14

Illustration of a sample random object distance measurement consisting of (a) the object arrangement and (b) the reported results.

Fig. 15
Fig. 15

Layout of proposed system designed to increase number of scan spots. Five laser diodes are split into five diffraction orders to create 25 beams total.

Fig. 16
Fig. 16

Model of DMD beam steering using five laser sources to increase number of scan spots to 25. (a) shows the 25 scan directions, (b) shows the 5 laser diodes, collimating lens, DMD, and collection optics, (c) shows simulated normalized diffraction efficiencies of the 25 proposed diffraction orders.

Tables (3)

Tables Icon

Table 1 Diffraction Angle Test Results

Tables Icon

Table 2 Measurement Repeatability

Tables Icon

Table 3 Performance Summary for Two DMD Types

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ +1 =arcsin( 2λ p )
θ +1 2 =arctan( N LD d 2 1 f col )
f col = A rec 2 1 N A 2 1
N LD tan( θ +1 2 ) A rec d 1 N A col 2 1
R= E T E S σ A ilm A rec π α( η atm 2 η sys )
R E T S σ A ilm A rec π α( η atm 2 η sys )
LineScanRate= PatternRefreshRate N LD N Order
N LD d f col = d APD f rec

Metrics