Abstract

Ultrathin crystalline silicon solar cells are a promising technology roadmap to achieve more cost effectiveness. However, experimental reports on ultrathin crystalline silicon cells with thickness less than 20 µm are rare. Here, we experimentally fabricate and investigate ultrathin monocrystalline silicon solar cells consisting of 16 µm-silicon base thickness and low-cost front random pyramidal texture with the feature size of 1-2 µm. The normalized light absorption is calculated to explain the measured external quantum efficiency. The achieved efficiency is 15.1% for the single-layer passivated textured solar cell. In addition, via double-layer passivation of Al2O3/SiNx, the efficiency is further increased to 16.4% for the best textured cell, which significantly improves the absolute efficiency with Δη = 1.3%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping in ultrathin 25  μm exfoliated Si solar cells

Mohamed M. Hilali, Sayan Saha, Emmanuel Onyegam, Rajesh Rao, Leo Mathew, and Sanjay K. Banerjee
Appl. Opt. 53(27) 6140-6147 (2014)

A fair comparison between ultrathin crystalline-silicon solar cells with either periodic or correlated disorder inverted pyramid textures

Jérôme Muller, Aline Herman, Alexandre Mayer, and Olivier Deparis
Opt. Express 23(11) A657-A670 (2015)

Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies

Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jürgen Hüpkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl, and Dietmar Knipp
Opt. Express 21(S4) A595-A606 (2013)

References

  • View by:
  • |
  • |
  • |

  1. See www.itrpv.net for the international technology roadmap for photovoltaic results (2015).
  2. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  3. W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
    [Crossref] [PubMed]
  4. I. Kim, D. S. Jeong, W. S. Lee, W. M. Kim, T. S. Lee, D. K. Lee, J. H. Song, J. K. Kim, and K. S. Lee, “Silicon nanodisk array design for effective light trapping in ultrathin c-Si,” Opt. Express 22(S6Suppl 6), A1431–A1439 (2014).
    [Crossref] [PubMed]
  5. Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
    [Crossref]
  6. A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
    [Crossref]
  7. A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
    [Crossref] [PubMed]
  8. W. Yan, S. Dottermusch, C. Reitz, and B. S. Richards, “Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications,” Appl. Phys. Lett. 109(14), 143901 (2016).
    [Crossref]
  9. R. A. Pala, S. Butun, K. Aydin, and H. A. Atwater, “Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces,” Sci. Rep. 6(1), 31451 (2016).
    [Crossref] [PubMed]
  10. C. Trompoukis, I. Massiot, V. Depauw, O. El Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24(2), A191–A201 (2016).
    [Crossref] [PubMed]
  11. C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
    [Crossref]
  12. M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
    [Crossref] [PubMed]
  13. S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
    [Crossref] [PubMed]
  14. L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
    [Crossref]
  15. W. Yan, Z. Tao, M. Gu, and B. S. Richards, “Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays,” Sol. Energy 150, 156–160 (2017).
    [Crossref]
  16. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
    [Crossref] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  18. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]

2017 (2)

W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
[Crossref] [PubMed]

W. Yan, Z. Tao, M. Gu, and B. S. Richards, “Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays,” Sol. Energy 150, 156–160 (2017).
[Crossref]

2016 (4)

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

W. Yan, S. Dottermusch, C. Reitz, and B. S. Richards, “Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications,” Appl. Phys. Lett. 109(14), 143901 (2016).
[Crossref]

R. A. Pala, S. Butun, K. Aydin, and H. A. Atwater, “Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces,” Sci. Rep. 6(1), 31451 (2016).
[Crossref] [PubMed]

C. Trompoukis, I. Massiot, V. Depauw, O. El Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24(2), A191–A201 (2016).
[Crossref] [PubMed]

2015 (2)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

2014 (3)

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

I. Kim, D. S. Jeong, W. S. Lee, W. M. Kim, T. S. Lee, D. K. Lee, J. H. Song, J. K. Kim, and K. S. Lee, “Silicon nanodisk array design for effective light trapping in ultrathin c-Si,” Opt. Express 22(S6Suppl 6), A1431–A1439 (2014).
[Crossref] [PubMed]

2013 (1)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

2012 (3)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Alcubilla, R.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Andreani, L. C.

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

Atwater, H. A.

R. A. Pala, S. Butun, K. Aydin, and H. A. Atwater, “Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces,” Sci. Rep. 6(1), 31451 (2016).
[Crossref] [PubMed]

Aydin, K.

R. A. Pala, S. Butun, K. Aydin, and H. A. Atwater, “Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces,” Sci. Rep. 6(1), 31451 (2016).
[Crossref] [PubMed]

Barnett, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Boriskina, S. V.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Bozzola, A.

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

Branham, M. S.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Butun, S.

R. A. Pala, S. Butun, K. Aydin, and H. A. Atwater, “Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces,” Sci. Rep. 6(1), 31451 (2016).
[Crossref] [PubMed]

Calle, E.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Carroll, M.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Chen, G.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Chen, W.

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

Cui, Y.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Daif, O. E.

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Depauw, V.

C. Trompoukis, I. Massiot, V. Depauw, O. El Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24(2), A191–A201 (2016).
[Crossref] [PubMed]

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Dmitriev, A.

Dottermusch, S.

W. Yan, S. Dottermusch, C. Reitz, and B. S. Richards, “Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications,” Appl. Phys. Lett. 109(14), 143901 (2016).
[Crossref]

El Daif, O.

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Garín, M.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Geng, J.

Gerger, A. P.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Gordon, I.

C. Trompoukis, I. Massiot, V. Depauw, O. El Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24(2), A191–A201 (2016).
[Crossref] [PubMed]

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Gu, M.

W. Yan, Z. Tao, M. Gu, and B. S. Richards, “Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays,” Sol. Energy 150, 156–160 (2017).
[Crossref]

Han, J.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Han, S. E.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Hoard, B. R.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Hsu, W. C.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

Jeong, D. S.

Jeong, S.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Ji, J.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Jin, R.

Kim, I.

Kim, J. K.

Kim, W. M.

Kowalczewski, P.

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

Lee, D. K.

Lee, K.

Lee, K. S.

Lee, T. S.

Lee, W. S.

Lennon, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Li, H.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Liang, X.

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Lochtefeld, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Loomis, J.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Massiot, I.

Mavrokefalos, A.

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

McGehee, M. D.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Mertens, R.

Opila, R.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Ortega, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Pala, R. A.

R. A. Pala, S. Butun, K. Aydin, and H. A. Atwater, “Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces,” Sci. Rep. 6(1), 31451 (2016).
[Crossref] [PubMed]

Pan, W.

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

Poortmans, J.

C. Trompoukis, I. Massiot, V. Depauw, O. El Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24(2), A191–A201 (2016).
[Crossref] [PubMed]

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Premaratne, M.

Reitz, C.

W. Yan, S. Dottermusch, C. Reitz, and B. S. Richards, “Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications,” Appl. Phys. Lett. 109(14), 143901 (2016).
[Crossref]

Repo, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Richards, B. S.

W. Yan, Z. Tao, M. Gu, and B. S. Richards, “Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays,” Sol. Energy 150, 156–160 (2017).
[Crossref]

W. Yan, S. Dottermusch, C. Reitz, and B. S. Richards, “Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications,” Appl. Phys. Lett. 109(14), 143901 (2016).
[Crossref]

Rukhlenko, I. D.

Savin, H.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Song, J. H.

Tan, X.

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

Tao, Z.

W. Yan, Z. Tao, M. Gu, and B. S. Richards, “Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays,” Sol. Energy 150, 156–160 (2017).
[Crossref]

Trompoukis, C.

C. Trompoukis, I. Massiot, V. Depauw, O. El Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24(2), A191–A201 (2016).
[Crossref] [PubMed]

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

von Gastrow, G.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, L.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Wang, W.

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

Wang, Z.

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

Xiao, F.

Yan, W.

W. Yan, Z. Tao, M. Gu, and B. S. Richards, “Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays,” Sol. Energy 150, 156–160 (2017).
[Crossref]

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

W. Yan, S. Dottermusch, C. Reitz, and B. S. Richards, “Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications,” Appl. Phys. Lett. 109(14), 143901 (2016).
[Crossref]

Yerci, S.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Zhu, W.

Adv. Mater. (1)

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

W. Yan, S. Dottermusch, C. Reitz, and B. S. Richards, “Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications,” Appl. Phys. Lett. 109(14), 143901 (2016).
[Crossref]

IEEE J. Photovoltaics (1)

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% Efficient 18-μm SiliconSolar Cell on Steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

J. Appl. Phys. (1)

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

J. Photonics Energy (1)

Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6(4), 047001 (2016).
[Crossref]

Nano Lett. (2)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, “Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications,” Nano Lett. 12(6), 2792–2796 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Sci. Rep. (1)

R. A. Pala, S. Butun, K. Aydin, and H. A. Atwater, “Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces,” Sci. Rep. 6(1), 31451 (2016).
[Crossref] [PubMed]

Sol. Energy (1)

W. Yan, Z. Tao, M. Gu, and B. S. Richards, “Photocurrent enhancement of ultrathin front-textured crystalline silicon solar cells by rear-located periodic silver nanoarrays,” Sol. Energy 150, 156–160 (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

See www.itrpv.net for the international technology roadmap for photovoltaic results (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM view of front pyramidal texture (a); Schematic of the ultrathin c-Si solar device (b); Photo of the device (c); and Cross-sectional SEM image of the solar cell (d). The red dashed line indicates the boundary between silicon and the substrates.

Fig. 2
Fig. 2

Measured EQE curves of the planar and textured silicon cells in the wavelength range of 300 to 1100 nm.

Fig. 3
Fig. 3

Calculated wavelength dependent light absorption of the planar and textured silicon cells in the wavelength range of 300 to 1100 nm.

Fig. 4
Fig. 4

Two-dimensional light absorption density distribution profiles for the planar and textured silicon cells at the three wavelengths. The calculation results are shown for the planar silicon cell at 400 nm (a), 700nm (b), and 1000 nm (c) and for the textured silicon cell at 400 nm (d), 700nm (e), and 1000 nm (f), respectively. The white dashed lines indicate the boundary between silicon and air whereas the red dashed lines define the boundary between silicon and the substrate.

Fig. 5
Fig. 5

J-V responses of the textured ultrathin c-Si cells with SiNx passivation and Al2O3/SiNx passivation, respectively.

Tables (1)

Tables Icon

Table 1 Photovoltaic parameters of the planar ultrathin c-Si cell and the textured ultrathin c-Si with single-layer passivation of SiNx and double-layer passivation of Al2O3/SiNx.