Abstract

Two-dimensional photonic crystal waveguides can support guided modes with low loss. Interfacing such a guided mode with free-space propagation modes is crucial for photonic integrated circuits. Here we propose a dielectric resonator antenna (DRA) fully integrated with a photonic crystal waveguide for endfire radiation. High radiation efficiency can be achieved from the DRA that relies on oscillating displacement currents in a low-loss dielectric material. The antenna is designed to operate at a high-order resonance for high gain. The reflection loss at the interface between the two components is minimized via a matching air hole, the mechanism of which is qualitatively described via temporal coupled-mode theory. As a proof of concept, the all-dielectric integrated structure is realized on a single intrinsic silicon wafer to operate at terahertz frequencies. The antenna footprint is only about one square operational wavelength. The experimental validation confirms the maximum gain of over 10.6 dBi with 3-dB angular beam widths of 29.0 degrees and 45.7 degrees in orthogonal dimensions. The impedance bandwidth obtained from simulation is 6%, spanning 311 to 331 GHz. Given a suitable low-loss dielectric material, this all-dielectric structure holds potential for scaling to infrared and visible light frequencies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric resonator nanoantennas at visible frequencies

Longfang Zou, Withawat Withayachumnankul, Charan M. Shah, Arnan Mitchell, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux
Opt. Express 21(1) 1344-1352 (2013)

Waveguide-fed optical hybrid plasmonic patch nano-antenna

Leila Yousefi and Amy C. Foster
Opt. Express 20(16) 18326-18335 (2012)

Real photonic waveguides: guiding light through imperfections

Daniele Melati, Andrea Melloni, and Francesco Morichetti
Adv. Opt. Photon. 6(2) 156-224 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  3. A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol. 1, 4–11 (2002).
    [Crossref]
  4. S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightw. Technol. 24, 4554–4567 (2006).
    [Crossref]
  5. T. Baba, “Photonic crystals: Remember the light,” Nat. Photon. 1, 11–12 (2007).
    [Crossref]
  6. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458 (2007).
    [Crossref]
  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008), 2nd ed.
  8. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
    [Crossref]
  9. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
    [Crossref]
  10. R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photon. 8, 657–663 (2014).
    [Crossref]
  11. T. Stomeo, F. V. Laere, M. Ayre, C. Cambournac, H. Benisty, D. V. Thourhout, R. Baets, and T. F. Krauss, “Integration of grating couplers with a compact photonic crystal demultiplexer on an InP membrane,” Opt. Lett. 33, 884–886 (2008).
    [Crossref] [PubMed]
  12. M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
    [Crossref]
  13. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [Crossref] [PubMed]
  14. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  15. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [Crossref]
  16. E. Peytavit, J.-F. Lampin, T. Akalin, and L. Desplanque, “Integrated terahertz TEM horn antenna,” Electron. Lett. 43, 73–75 (2007).
    [Crossref]
  17. M. Fujita, T. Nagatsuma, T. Ishigaki, D. Onishi, and E. Miyai, “Terahertz-wave connector and terahertz-wave integrated circuits, and wave guide and antenna structure,” US Patent2014/0248020 (September14, 2014).
  18. S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas. Propag. 31, 406–412 (1983).
    [Crossref]
  19. Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas. Propag. 56, 3589–3592 (2008).
    [Crossref]
  20. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).
  21. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
    [Crossref]
  22. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
    [Crossref]
  23. K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
    [Crossref] [PubMed]
  24. M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
    [Crossref] [PubMed]
  25. D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
    [Crossref] [PubMed]
  26. D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
    [Crossref]
  27. A. Perron, T. A. Denidni, and A.-R. Sebak, “High-gain hybrid dielectric resonator antenna for millimeter-wave applications: design and implementation,” IEEE Trans. Antennas. Propag. 57, 2882–2892 (2009).
    [Crossref]
  28. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
    [Crossref]
  29. D. M. Pozar, Microwave Engineering (John Wiley & Sons Inc., 2011), 4th ed.
  30. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley-Interscience, 2005).
  31. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
    [Crossref]

2016 (4)

M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
[Crossref] [PubMed]

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

2015 (2)

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
[Crossref] [PubMed]

2014 (2)

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photon. 8, 657–663 (2014).
[Crossref]

2010 (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

2009 (1)

A. Perron, T. A. Denidni, and A.-R. Sebak, “High-gain hybrid dielectric resonator antenna for millimeter-wave applications: design and implementation,” IEEE Trans. Antennas. Propag. 57, 2882–2892 (2009).
[Crossref]

2008 (2)

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas. Propag. 56, 3589–3592 (2008).
[Crossref]

T. Stomeo, F. V. Laere, M. Ayre, C. Cambournac, H. Benisty, D. V. Thourhout, R. Baets, and T. F. Krauss, “Integration of grating couplers with a compact photonic crystal demultiplexer on an InP membrane,” Opt. Lett. 33, 884–886 (2008).
[Crossref] [PubMed]

2007 (3)

E. Peytavit, J.-F. Lampin, T. Akalin, and L. Desplanque, “Integrated terahertz TEM horn antenna,” Electron. Lett. 43, 73–75 (2007).
[Crossref]

T. Baba, “Photonic crystals: Remember the light,” Nat. Photon. 1, 11–12 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458 (2007).
[Crossref]

2006 (1)

S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightw. Technol. 24, 4554–4567 (2006).
[Crossref]

2005 (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

2004 (1)

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

2002 (1)

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol. 1, 4–11 (2002).
[Crossref]

2001 (1)

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[Crossref]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

1999 (2)

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[Crossref]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

1983 (1)

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas. Propag. 31, 406–412 (1983).
[Crossref]

Abbott, D.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Akalin, T.

E. Peytavit, J.-F. Lampin, T. Akalin, and L. Desplanque, “Integrated terahertz TEM horn antenna,” Electron. Lett. 43, 73–75 (2007).
[Crossref]

Almpanis, G.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas. Propag. 56, 3589–3592 (2008).
[Crossref]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458 (2007).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Ashida, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photon. 8, 657–663 (2014).
[Crossref]

Ayre, M.

Baba, T.

T. Baba, “Photonic crystals: Remember the light,” Nat. Photon. 1, 11–12 (2007).
[Crossref]

Baets, R.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley-Interscience, 2005).

Benedickter, H.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas. Propag. 56, 3589–3592 (2008).
[Crossref]

Benisty, H.

Bhaskaran, M.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

Bhat, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[Crossref]

Boroditsky, M.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[Crossref]

Cambournac, C.

Carrasco, E.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Chutinan, A.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Coccioli, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[Crossref]

Dai, J.

Denidni, T. A.

A. Perron, T. A. Denidni, and A.-R. Sebak, “High-gain hybrid dielectric resonator antenna for millimeter-wave applications: design and implementation,” IEEE Trans. Antennas. Propag. 57, 2882–2892 (2009).
[Crossref]

Desplanque, L.

E. Peytavit, J.-F. Lampin, T. Akalin, and L. Desplanque, “Integrated terahertz TEM horn antenna,” Electron. Lett. 43, 73–75 (2007).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
[Crossref]

Fujita, M.

M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
[Crossref] [PubMed]

M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
[Crossref]

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
[Crossref] [PubMed]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photon. 8, 657–663 (2014).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458 (2007).
[Crossref]

M. Fujita, T. Nagatsuma, T. Ishigaki, D. Onishi, and E. Miyai, “Terahertz-wave connector and terahertz-wave integrated circuits, and wave guide and antenna structure,” US Patent2014/0248020 (September14, 2014).

Fumeaux, C.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas. Propag. 56, 3589–3592 (2008).
[Crossref]

Grischkowsky, D.

Gutruf, P.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
[Crossref]

Headland, D.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

Imada, M.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Ishigaki, T.

M. Fujita, T. Nagatsuma, T. Ishigaki, D. Onishi, and E. Miyai, “Terahertz-wave connector and terahertz-wave integrated circuits, and wave guide and antenna structure,” US Patent2014/0248020 (September14, 2014).

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008), 2nd ed.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008), 2nd ed.

Kakimi, R.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photon. 8, 657–663 (2014).
[Crossref]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
[Crossref]

Klemm, M.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

Krauss, T. F.

T. Stomeo, F. V. Laere, M. Ayre, C. Cambournac, H. Benisty, D. V. Thourhout, R. Baets, and T. F. Krauss, “Integration of grating couplers with a compact photonic crystal demultiplexer on an InP membrane,” Opt. Lett. 33, 884–886 (2008).
[Crossref] [PubMed]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[Crossref]

Laere, F. V.

Lai, Q.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas. Propag. 56, 3589–3592 (2008).
[Crossref]

Lampin, J.-F.

E. Peytavit, J.-F. Lampin, T. Akalin, and L. Desplanque, “Integrated terahertz TEM horn antenna,” Electron. Lett. 43, 73–75 (2007).
[Crossref]

Loncar, M.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol. 1, 4–11 (2002).
[Crossref]

Long, S.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas. Propag. 31, 406–412 (1983).
[Crossref]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
[Crossref]

McAllister, M.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas. Propag. 31, 406–412 (1983).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008), 2nd ed.

Mitchell, A.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

Miyai, E.

M. Fujita, T. Nagatsuma, T. Ishigaki, D. Onishi, and E. Miyai, “Terahertz-wave connector and terahertz-wave integrated circuits, and wave guide and antenna structure,” US Patent2014/0248020 (September14, 2014).

Mochizuki, M.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[Crossref]

Nagai, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photon. 8, 657–663 (2014).
[Crossref]

Nagatsuma, T.

M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

M. Yata, M. Fujita, and T. Nagatsuma, “Photonic-crystal diplexers for terahertz-wave applications,” Opt. Express 24, 7835–7849 (2016).
[Crossref] [PubMed]

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23, 31977–31990 (2015).
[Crossref] [PubMed]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photon. 8, 657–663 (2014).
[Crossref]

M. Fujita, T. Nagatsuma, T. Ishigaki, D. Onishi, and E. Miyai, “Terahertz-wave connector and terahertz-wave integrated circuits, and wave guide and antenna structure,” US Patent2014/0248020 (September14, 2014).

Nirantar, S.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458 (2007).
[Crossref]

S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightw. Technol. 24, 4554–4567 (2006).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

Onishi, D.

M. Fujita, T. Nagatsuma, T. Ishigaki, D. Onishi, and E. Miyai, “Terahertz-wave connector and terahertz-wave integrated circuits, and wave guide and antenna structure,” US Patent2014/0248020 (September14, 2014).

Painter, O.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol. 1, 4–11 (2002).
[Crossref]

Perron, A.

A. Perron, T. A. Denidni, and A.-R. Sebak, “High-gain hybrid dielectric resonator antenna for millimeter-wave applications: design and implementation,” IEEE Trans. Antennas. Propag. 57, 2882–2892 (2009).
[Crossref]

Perruisseau-Carrier, J.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Peytavit, E.

E. Peytavit, J.-F. Lampin, T. Akalin, and L. Desplanque, “Integrated terahertz TEM horn antenna,” Electron. Lett. 43, 73–75 (2007).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (John Wiley & Sons Inc., 2011), 4th ed.

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

Scherer, A.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol. 1, 4–11 (2002).
[Crossref]

Schwarz, J.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Sebak, A.-R.

A. Perron, T. A. Denidni, and A.-R. Sebak, “High-gain hybrid dielectric resonator antenna for millimeter-wave applications: design and implementation,” IEEE Trans. Antennas. Propag. 57, 2882–2892 (2009).
[Crossref]

Shah, C. M.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

Shen, L.

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas. Propag. 31, 406–412 (1983).
[Crossref]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Sriram, S.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

Stomeo, T.

Thourhout, D. V.

Tsuruda, K.

Vahldieck, R.

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas. Propag. 56, 3589–3592 (2008).
[Crossref]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
[Crossref]

Vrijen, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[Crossref]

Vuckovic, J.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol. 1, 4–11 (2002).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008), 2nd ed.

Withayachumnankul, W.

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

Yablonovitch, E.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yata, M.

Yoshie, T.

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol. 1, 4–11 (2002).
[Crossref]

Zhang, J.

Zhang, W.

Zou, L.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

ACS Photonics (1)

D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, “Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface,” ACS Photonics 3, 1019–1026 (2016).
[Crossref]

Adv. Mater. (1)

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[Crossref]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[Crossref]

Electron. Lett. (1)

E. Peytavit, J.-F. Lampin, T. Akalin, and L. Desplanque, “Integrated terahertz TEM horn antenna,” Electron. Lett. 43, 73–75 (2007).
[Crossref]

IEEE J. Quant. Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quant. Electron. 35, 1322–1331 (1999).
[Crossref]

IEEE Photon. J. (1)

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).

IEEE Trans. Antennas. Propag. (3)

S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas. Propag. 31, 406–412 (1983).
[Crossref]

Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas. Propag. 56, 3589–3592 (2008).
[Crossref]

A. Perron, T. A. Denidni, and A.-R. Sebak, “High-gain hybrid dielectric resonator antenna for millimeter-wave applications: design and implementation,” IEEE Trans. Antennas. Propag. 57, 2882–2892 (2009).
[Crossref]

IEEE Trans. Nanotechnol. (1)

A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, “Photonic crystals for confining, guiding, and emitting light,” IEEE Trans. Nanotechnol. 1, 4–11 (2002).
[Crossref]

J. Lightw. Technol. (1)

S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightw. Technol. 24, 4554–4567 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Nat. Photon. (4)

T. Baba, “Photonic crystals: Remember the light,” Nat. Photon. 1, 11–12 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458 (2007).
[Crossref]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photon. 8, 657–663 (2014).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

Nature (2)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Fujita and T. Nagatsuma, “Photonic crystal technology for terahertz system integration,” Proc. SPIE 9856, 98560P (2016).
[Crossref]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[Crossref]

Other (4)

M. Fujita, T. Nagatsuma, T. Ishigaki, D. Onishi, and E. Miyai, “Terahertz-wave connector and terahertz-wave integrated circuits, and wave guide and antenna structure,” US Patent2014/0248020 (September14, 2014).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008), 2nd ed.

D. M. Pozar, Microwave Engineering (John Wiley & Sons Inc., 2011), 4th ed.

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley-Interscience, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DRA fed via a photonic crystal waveguide. (a) Perspective view. (b) Dimensions of the waveguide and DRA: a = 240 μm, dw = 0.6a = 144 μm, dr = 642 μm, da = 1016 μm, dm = 100 μm, sr = 50 μm, and sm = 405 μm. The silicon thickness is 200 μm. The DRA and surrounding air ring share the same center. The photonic crystal on each side of this waveguide extends to 5.6 mm, but is not shown here for clarity.

Fig. 2
Fig. 2

Conceptual diagram for the coupling between the waveguide, DRA, and free space. Here, ω0 corresponds to a resonance frequency of the DRA, E represent propagating fields in isolated incident (+) and reflected (-) components, and τw = 2Qw0 and τr = 2Qr0 are the lifetimes of the resonator coupling with the waveguide and free space, respectively. A shorter lifetime implies stronger coupling and lower Q factor. A single resonance mode and a single waveguide mode are considered, and absorption losses are neglected.

Fig. 3
Fig. 3

Fabricated structure. (a) Complete structure fabricated from a single silicon wafer. Visible in this image from left to right are the tapered dielectric feed to a rectangular waveguide, photonic crystal waveguide, and DRA. (b) Optical microscope image around the antenna part. The matching air hole can be seen mediating the waveguide and antenna.

Fig. 4
Fig. 4

Continuous-wave electronic transceiver chain. This configuration is used for both the measurements of gain and radiation patterns. SG: signal generator, Amp: amplifier, Tx: transmitter, Rx: receiver, SBD: Schottky barrier diode, SA: spectrum analyzer, IF: intermediate frequency, LO: local oscillator, and RF: radio frequency.

Fig. 5
Fig. 5

Comparison of simulated amplitude reflection coefficient. Each antenna is fed by the photonic crystal waveguide with a length of 1.92 mm (8a). The simulation results in all figures are carried out with the frequency-domain solver in CST Microwave Studio 2016.

Fig. 6
Fig. 6

Simulated mode field distributions at 325 GHz. (a–b) Vector plots for the E and H fields, respectively. (c–d) Tangential and normal E-field components in plane and out of plane, respectively. The scales for all plots are linear and capped, and the plots are on the symmetry planes.

Fig. 7
Fig. 7

Normalized radiation patterns in dB at 325 GHz. (a) E-plane and (b) H-plane. The measurement step size is 1 degree. The angular ranges for the measurement are limited by the dynamic range of the setup.

Fig. 8
Fig. 8

Realized gain for the matched DRA and two tapered rod antennas. (a) Measurement, and (b) simulation. The shaded regions represent the systematic error due to standing waves. Owing to the noise floor below 315 GHz in the measured gains, the waveguide losses cannot be properly compensated. Instead, both the measured and simulated gains account for the losses incurred in the 18.7-mm waveguide. The gain below 0 dBi observable in the simulation around 310 GHz is because of the cut-off of the photonic crystal waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( ω ) = | E r | 2 | E w + | 2 = 4 τ W τ r ( ω ω 0 ) 2 + ( 1 τ W + 1 τ r ) 2 .