Abstract

Electrohydrodynamic actuation of dielectric liquid enables the development of an efficient focus-tunable dielectro-optofluidic lens (DOL) by manipulating a liquid–liquid interface. However, practical utilization of the previous DOL is hindered by its narrow and slow focus-tunability due to the direct movement of the interface. Here, we propose pinning the interface to directly change the interface shape while preventing the interface movement. The newly designed DOL exploits sudden changes in the channel diameter and the surface wettability to firmly pin the interface. Our results demonstrate that the tuning range of the DOL from −40 to +35 diopters is achieved in 0.1 s.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrowetting-actuated zoom lens with spherical-interface liquid lenses

Runling Peng, Jiabi Chen, and Songlin Zhuang
J. Opt. Soc. Am. A 25(11) 2644-2650 (2008)

Variable focus dielectric liquid droplet lens

Chih-Cheng Cheng, C. Alex Chang, and J. Andrew Yeh
Opt. Express 14(9) 4101-4106 (2006)

Liquid tunable double-focus lens fabricated with diamond cutting and soft lithography

Hui Min Leung, Guangya Zhou, Hongbin Yu, Fook Siong Chau, and A. Senthil Kumar
Appl. Opt. 48(30) 5733-5740 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
    [Crossref]
  2. N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010).
    [Crossref] [PubMed]
  3. M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid–fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21, 444–455 (2015).
    [Crossref]
  4. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3, 159–163 (2000).
    [Crossref]
  5. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128 (2004).
    [Crossref]
  6. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
    [Crossref] [PubMed]
  7. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nature Photon. 2, 610–613 (2008).
    [Crossref]
  8. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
    [Crossref]
  9. J.-W. Kim, T. Yoshimoto, S. Yokota, and K. Edamura, “Concept of a focus-tunable ecf microlens and fabrication of a large model prototype,” Int. J. Auto. Tech. 6, 476–481 (2012).
    [Crossref]
  10. K. Wei, H. Huang, Q. Wang, and Y. Zhao, “Focus-tunable liquid lens with an aspherical membrane for improved central and peripheral resolutions at high diopters,” Opt. Express 24, 3929–3939 (2016).
    [Crossref] [PubMed]
  11. N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
    [Crossref] [PubMed]
  12. L. Li, D. Wang, C. Liu, and Q.-H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24, 2931–2940 (2016).
    [Crossref] [PubMed]
  13. S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
    [Crossref]
  14. C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
    [Crossref] [PubMed]
  15. D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
    [Crossref] [PubMed]
  16. R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24, 9660–9666 (2016).
    [Crossref] [PubMed]
  17. S. Schuhladen, K. Banerjee, M. Sturmer, P. Muller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light Sci. Appl. 5, e16005 (2016).
    [Crossref]
  18. P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14, 737–743 (2014).
    [Crossref]
  19. W. Kim, C. Lee, C. Kim, and D. S. Kim, “Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids,” Phys. Rev. Appl. (under review).
  20. D. A. Saville, “Electrohydrodynamics: The taylor-melcher leaky dielectric model,” Annu. Rev. Fluid Mech. 29, 27–64 (1997).
    [Crossref]
  21. C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20, 18180–18187 (2012).
    [Crossref] [PubMed]
  22. B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11, 393–397 (2011).
    [Crossref]
  23. A. H. Hirsa, C. A. López, M. A. Laytin, M. J. Vogel, and P. H. Steen, “Low-dissipation capillary switches at small scales,” Appl. Phys. Lett. 86, 014106 (2005).
    [Crossref]
  24. W. Kim, J. C. Ryu, Y. K. Suh, and K. H. Kang, “Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow,” Appl. Phys. Lett. 99, 224102 (2011).
    [Crossref]
  25. P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004).
    [Crossref]
  26. P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827–863 (1985).
    [Crossref]
  27. S. W. Walker, B. Shapiro, and R. H. Nochetto, “Electrowetting with contact line pinning: Computational modeling and comparisons with experiments,” Phys. Fluids 21, 102103 (2009).
    [Crossref]
  28. H. B. Eral, D. J. C. M. ’t Mannetje, and J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications,” Colloid Polym. Sci. 291, 247–260 (2013).
    [Crossref]
  29. H. Ren, R. B. Fair, M. G. Pollack, and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport,” Sens. Actuat. B 87, 201–206 (2002).
    [Crossref]
  30. J. C. Ryu, H. J. Park, J. K. Park, and K. H. Kang, “New electrohydrodynamic flow caused by the onsager effect,” Phys. Rev. Lett. 104, 104502 (2010).
    [Crossref] [PubMed]

2016 (7)

2015 (2)

M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
[Crossref]

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid–fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21, 444–455 (2015).
[Crossref]

2014 (2)

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14, 737–743 (2014).
[Crossref]

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

2013 (1)

H. B. Eral, D. J. C. M. ’t Mannetje, and J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications,” Colloid Polym. Sci. 291, 247–260 (2013).
[Crossref]

2012 (2)

J.-W. Kim, T. Yoshimoto, S. Yokota, and K. Edamura, “Concept of a focus-tunable ecf microlens and fabrication of a large model prototype,” Int. J. Auto. Tech. 6, 476–481 (2012).
[Crossref]

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20, 18180–18187 (2012).
[Crossref] [PubMed]

2011 (3)

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11, 393–397 (2011).
[Crossref]

W. Kim, J. C. Ryu, Y. K. Suh, and K. H. Kang, “Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow,” Appl. Phys. Lett. 99, 224102 (2011).
[Crossref]

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

2010 (2)

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[Crossref] [PubMed]

J. C. Ryu, H. J. Park, J. K. Park, and K. H. Kang, “New electrohydrodynamic flow caused by the onsager effect,” Phys. Rev. Lett. 104, 104502 (2010).
[Crossref] [PubMed]

2009 (1)

S. W. Walker, B. Shapiro, and R. H. Nochetto, “Electrowetting with contact line pinning: Computational modeling and comparisons with experiments,” Phys. Fluids 21, 102103 (2009).
[Crossref]

2008 (1)

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nature Photon. 2, 610–613 (2008).
[Crossref]

2006 (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

2005 (1)

A. H. Hirsa, C. A. López, M. A. Laytin, M. J. Vogel, and P. H. Steen, “Low-dissipation capillary switches at small scales,” Appl. Phys. Lett. 86, 014106 (2005).
[Crossref]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128 (2004).
[Crossref]

2002 (1)

H. Ren, R. B. Fair, M. G. Pollack, and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport,” Sens. Actuat. B 87, 201–206 (2002).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3, 159–163 (2000).
[Crossref]

1997 (1)

D. A. Saville, “Electrohydrodynamics: The taylor-melcher leaky dielectric model,” Annu. Rev. Fluid Mech. 29, 27–64 (1997).
[Crossref]

1985 (1)

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827–863 (1985).
[Crossref]

’t Mannetje, D. J. C. M.

H. B. Eral, D. J. C. M. ’t Mannetje, and J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications,” Colloid Polym. Sci. 291, 247–260 (2013).
[Crossref]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Banerjee, K.

S. Schuhladen, K. Banerjee, M. Sturmer, P. Muller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light Sci. Appl. 5, e16005 (2016).
[Crossref]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3, 159–163 (2000).
[Crossref]

Bright, V. M.

Brochard-Wyart, F.

P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004).
[Crossref]

Carpi, F.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Chen, X.

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

Cheng, L.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11, 393–397 (2011).
[Crossref]

de Gennes, P. G.

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827–863 (1985).
[Crossref]

de Gennes, P.-G.

P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004).
[Crossref]

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Edamura, K.

J.-W. Kim, T. Yoshimoto, S. Yokota, and K. Edamura, “Concept of a focus-tunable ecf microlens and fabrication of a large model prototype,” Int. J. Auto. Tech. 6, 476–481 (2012).
[Crossref]

Eral, H. B.

H. B. Eral, D. J. C. M. ’t Mannetje, and J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications,” Colloid Polym. Sci. 291, 247–260 (2013).
[Crossref]

Fair, R. B.

H. Ren, R. B. Fair, M. G. Pollack, and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport,” Sens. Actuat. B 87, 201–206 (2002).
[Crossref]

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Gopinath, J. T.

Hao, C.

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

Hasan, N.

He, Y.

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128 (2004).
[Crossref]

Hirsa, A. H.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11, 393–397 (2011).
[Crossref]

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nature Photon. 2, 610–613 (2008).
[Crossref]

A. H. Hirsa, C. A. López, M. A. Laytin, M. J. Vogel, and P. H. Steen, “Low-dissipation capillary switches at small scales,” Appl. Phys. Lett. 86, 014106 (2005).
[Crossref]

Huang, H.

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Kang, K. H.

W. Kim, J. C. Ryu, Y. K. Suh, and K. H. Kang, “Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow,” Appl. Phys. Lett. 99, 224102 (2011).
[Crossref]

J. C. Ryu, H. J. Park, J. K. Park, and K. H. Kang, “New electrohydrodynamic flow caused by the onsager effect,” Phys. Rev. Lett. 104, 104502 (2010).
[Crossref] [PubMed]

Kim, C.

M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
[Crossref]

W. Kim, C. Lee, C. Kim, and D. S. Kim, “Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids,” Phys. Rev. Appl. (under review).

Kim, D. S.

M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
[Crossref]

W. Kim, C. Lee, C. Kim, and D. S. Kim, “Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids,” Phys. Rev. Appl. (under review).

Kim, H.

Kim, J.-W.

J.-W. Kim, T. Yoshimoto, S. Yokota, and K. Edamura, “Concept of a focus-tunable ecf microlens and fabrication of a large model prototype,” Int. J. Auto. Tech. 6, 476–481 (2012).
[Crossref]

Kim, M.

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid–fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21, 444–455 (2015).
[Crossref]

Kim, W.

M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
[Crossref]

W. Kim, J. C. Ryu, Y. K. Suh, and K. H. Kang, “Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow,” Appl. Phys. Lett. 99, 224102 (2011).
[Crossref]

W. Kim, C. Lee, C. Kim, and D. S. Kim, “Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids,” Phys. Rev. Appl. (under review).

Kopp, D.

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
[Crossref] [PubMed]

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14, 737–743 (2014).
[Crossref]

Kuiper, S.

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid–fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21, 444–455 (2015).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128 (2004).
[Crossref]

Kyung, K.-U.

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

La, M.

M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
[Crossref]

Laytin, M. A.

A. H. Hirsa, C. A. López, M. A. Laytin, M. J. Vogel, and P. H. Steen, “Low-dissipation capillary switches at small scales,” Appl. Phys. Lett. 86, 014106 (2005).
[Crossref]

Lee, C.

M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
[Crossref]

W. Kim, C. Lee, C. Kim, and D. S. Kim, “Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids,” Phys. Rev. Appl. (under review).

Lehmann, L.

Li, K. Y.

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

Li, L.

Li, Q.

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

Lim, J. M.

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

Liu, C.

Liu, Y.

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

Llobera, A.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14, 737–743 (2014).
[Crossref]

López, C. A.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nature Photon. 2, 610–613 (2008).
[Crossref]

A. H. Hirsa, C. A. López, M. A. Laytin, M. J. Vogel, and P. H. Steen, “Low-dissipation capillary switches at small scales,” Appl. Phys. Lett. 86, 014106 (2005).
[Crossref]

Malouin, B. A.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11, 393–397 (2011).
[Crossref]

Mastrangelo, C. H.

Montoya, R. D.

Mugele, F.

Muller, P.

S. Schuhladen, K. Banerjee, M. Sturmer, P. Muller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light Sci. Appl. 5, e16005 (2016).
[Crossref]

Müller, P.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14, 737–743 (2014).
[Crossref]

Mun, S.

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

Murade, C. U.

Nam, S.

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

Nguyen, N.-T.

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[Crossref] [PubMed]

Nochetto, R. H.

S. W. Walker, B. Shapiro, and R. H. Nochetto, “Electrowetting with contact line pinning: Computational modeling and comparisons with experiments,” Phys. Fluids 21, 102103 (2009).
[Crossref]

Oh, J. M.

H. B. Eral, D. J. C. M. ’t Mannetje, and J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications,” Colloid Polym. Sci. 291, 247–260 (2013).
[Crossref]

Olles, J. D.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11, 393–397 (2011).
[Crossref]

Pan, M.

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid–fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21, 444–455 (2015).
[Crossref]

Park, B.

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

Park, H. J.

J. C. Ryu, H. J. Park, J. K. Park, and K. H. Kang, “New electrohydrodynamic flow caused by the onsager effect,” Phys. Rev. Lett. 104, 104502 (2010).
[Crossref] [PubMed]

Park, J. K.

J. C. Ryu, H. J. Park, J. K. Park, and K. H. Kang, “New electrohydrodynamic flow caused by the onsager effect,” Phys. Rev. Lett. 104, 104502 (2010).
[Crossref] [PubMed]

Park, S.

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

Park, S. K.

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

Park, S. M.

M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3, 159–163 (2000).
[Crossref]

Pollack, M. G.

H. Ren, R. B. Fair, M. G. Pollack, and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport,” Sens. Actuat. B 87, 201–206 (2002).
[Crossref]

Quéré, D.

P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004).
[Crossref]

Ren, H.

H. Ren, R. B. Fair, M. G. Pollack, and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport,” Sens. Actuat. B 87, 201–206 (2002).
[Crossref]

Ryu, J. C.

W. Kim, J. C. Ryu, Y. K. Suh, and K. H. Kang, “Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow,” Appl. Phys. Lett. 99, 224102 (2011).
[Crossref]

J. C. Ryu, H. J. Park, J. K. Park, and K. H. Kang, “New electrohydrodynamic flow caused by the onsager effect,” Phys. Rev. Lett. 104, 104502 (2010).
[Crossref] [PubMed]

Saville, D. A.

D. A. Saville, “Electrohydrodynamics: The taylor-melcher leaky dielectric model,” Annu. Rev. Fluid Mech. 29, 27–64 (1997).
[Crossref]

Schuhladen, S.

S. Schuhladen, K. Banerjee, M. Sturmer, P. Muller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light Sci. Appl. 5, e16005 (2016).
[Crossref]

Shapiro, B.

S. W. Walker, B. Shapiro, and R. H. Nochetto, “Electrowetting with contact line pinning: Computational modeling and comparisons with experiments,” Phys. Fluids 21, 102103 (2009).
[Crossref]

Shaughnessy, E. J.

H. Ren, R. B. Fair, M. G. Pollack, and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport,” Sens. Actuat. B 87, 201–206 (2002).
[Crossref]

Steen, P. H.

A. H. Hirsa, C. A. López, M. A. Laytin, M. J. Vogel, and P. H. Steen, “Low-dissipation capillary switches at small scales,” Appl. Phys. Lett. 86, 014106 (2005).
[Crossref]

Sturmer, M.

S. Schuhladen, K. Banerjee, M. Sturmer, P. Muller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light Sci. Appl. 5, e16005 (2016).
[Crossref]

Suh, Y. K.

W. Kim, J. C. Ryu, Y. K. Suh, and K. H. Kang, “Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow,” Appl. Phys. Lett. 99, 224102 (2011).
[Crossref]

Tang, S. K. Y.

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid–fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21, 444–455 (2015).
[Crossref]

Terrab, S.

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Underwood, K.

van der Ende, D.

Vogel, M. J.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11, 393–397 (2011).
[Crossref]

A. H. Hirsa, C. A. López, M. A. Laytin, M. J. Vogel, and P. H. Steen, “Low-dissipation capillary switches at small scales,” Appl. Phys. Lett. 86, 014106 (2005).
[Crossref]

Walker, S. W.

S. W. Walker, B. Shapiro, and R. H. Nochetto, “Electrowetting with contact line pinning: Computational modeling and comparisons with experiments,” Phys. Fluids 21, 102103 (2009).
[Crossref]

Wallrabe, U.

S. Schuhladen, K. Banerjee, M. Sturmer, P. Muller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light Sci. Appl. 5, e16005 (2016).
[Crossref]

Wang, D.

Wang, Q.

Wang, Q.-H.

Wang, Z.

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

Watson, A. M.

Wei, K.

Yokota, S.

J.-W. Kim, T. Yoshimoto, S. Yokota, and K. Edamura, “Concept of a focus-tunable ecf microlens and fabrication of a large model prototype,” Int. J. Auto. Tech. 6, 476–481 (2012).
[Crossref]

Yoshimoto, T.

J.-W. Kim, T. Yoshimoto, S. Yokota, and K. Edamura, “Concept of a focus-tunable ecf microlens and fabrication of a large model prototype,” Int. J. Auto. Tech. 6, 476–481 (2012).
[Crossref]

Yun, S.

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

Zappe, H.

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
[Crossref] [PubMed]

S. Schuhladen, K. Banerjee, M. Sturmer, P. Muller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light Sci. Appl. 5, e16005 (2016).
[Crossref]

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14, 737–743 (2014).
[Crossref]

Zhao, Y.

Adv. Funct. Mater. (1)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Annu. Rev. Fluid Mech. (1)

D. A. Saville, “Electrohydrodynamics: The taylor-melcher leaky dielectric model,” Annu. Rev. Fluid Mech. 29, 27–64 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. H. Hirsa, C. A. López, M. A. Laytin, M. J. Vogel, and P. H. Steen, “Low-dissipation capillary switches at small scales,” Appl. Phys. Lett. 86, 014106 (2005).
[Crossref]

W. Kim, J. C. Ryu, Y. K. Suh, and K. H. Kang, “Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow,” Appl. Phys. Lett. 99, 224102 (2011).
[Crossref]

S. Yun, S. Park, S. Nam, B. Park, S. K. Park, S. Mun, J. M. Lim, and K.-U. Kyung, “An electro-active polymer based lens module for dynamically varying focal system,” Appl. Phys. Lett. 109, 141908 (2016).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128 (2004).
[Crossref]

Biomicrofluidics (1)

N.-T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[Crossref] [PubMed]

Colloid Polym. Sci. (1)

H. B. Eral, D. J. C. M. ’t Mannetje, and J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications,” Colloid Polym. Sci. 291, 247–260 (2013).
[Crossref]

Eur. Phys. J. E: Soft Matter Biol. Phys. (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3, 159–163 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid–fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21, 444–455 (2015).
[Crossref]

Int. J. Auto. Tech. (1)

J.-W. Kim, T. Yoshimoto, S. Yokota, and K. Edamura, “Concept of a focus-tunable ecf microlens and fabrication of a large model prototype,” Int. J. Auto. Tech. 6, 476–481 (2012).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf. 16, 1801–1808 (2015).
[Crossref]

Lab Chip (2)

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14, 737–743 (2014).
[Crossref]

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11, 393–397 (2011).
[Crossref]

Light Sci. Appl. (1)

S. Schuhladen, K. Banerjee, M. Sturmer, P. Muller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light Sci. Appl. 5, e16005 (2016).
[Crossref]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Nature Photon. (1)

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nature Photon. 2, 610–613 (2008).
[Crossref]

Opt. Express (5)

Phys. Fluids (1)

S. W. Walker, B. Shapiro, and R. H. Nochetto, “Electrowetting with contact line pinning: Computational modeling and comparisons with experiments,” Phys. Fluids 21, 102103 (2009).
[Crossref]

Phys. Rev. Lett. (1)

J. C. Ryu, H. J. Park, J. K. Park, and K. H. Kang, “New electrohydrodynamic flow caused by the onsager effect,” Phys. Rev. Lett. 104, 104502 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827–863 (1985).
[Crossref]

Sci. Rep. (1)

C. Hao, Y. Liu, X. Chen, Y. He, Q. Li, K. Y. Li, and Z. Wang, “Electrowetting on liquid-infused film (ewolf): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging,” Sci. Rep. 4, 6846 (2014).
[Crossref] [PubMed]

Sens. Actuat. B (1)

H. Ren, R. B. Fair, M. G. Pollack, and E. J. Shaughnessy, “Dynamics of electro-wetting droplet transport,” Sens. Actuat. B 87, 201–206 (2002).
[Crossref]

Other (2)

W. Kim, C. Lee, C. Kim, and D. S. Kim, “Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids,” Phys. Rev. Appl. (under review).

P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (1856 KB)      Focus adjustment using the DOL. Application of a voltage of 1300 V adjusts its focus from the POSTECH emblem to 1951 USAF test chart.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the DOL (not to scale). (a) Two immiscible liquids form a pinned curved interface at the sharp corner. (b) Electric fields (green dashed lines) and streamlines of the EHD flow (navy solid lines). H.V., high voltage; GND, ground. When a voltage is applied, the EHD flow deforms the pinned interface from convex (c1) to flat (c2) and concave (c3) shape.

Fig. 2
Fig. 2

Experimental demonstration of the EHD actuation of the pinned interface. (a) Images of the L–L interface when (a1) 0 V, (a2) 1000 V, and (a3) 1600 V is applied, respectively. (b) Relationship between the applied voltage and ROC of the L–L interface. (c) Normalized curvature κ* was proportional to the cube of the applied voltage. Error bars represent standard deviation from the mean (n = 10).

Fig. 3
Fig. 3

Time evolution of the curvature of the pinned interface when voltages of 400, 800, 1200, and 1600 V are (a) applied and (b) released. (c) Actuation and recovery time of the interface when a voltage is applied and released, respectively.

Fig. 4
Fig. 4

Optical characterization of the DOL. (a) Relationship between the applied voltage and the optical power f−1 of the DOL. (b) Captured images of a 1951 USAF resolution test chart when (b1) 0 V, (b2) 800 V, (b3) 1200 V, and (b4) 1600 V is applied to the DOL, respectively. (c) As the optical power of the DOL increases, the resolution (blank square) and the FOV (filled diamond) are improved and narrowed, respectively. Error bars represent standard deviation from the mean (n = 3).

Fig. 5
Fig. 5

Reversibility of the DOL. The curvature of the L–L interface reversibly changes when a voltage of 1600 V is applied (blue square) and released (red circle).

Fig. 6
Fig. 6

Comparison of initial (blue solid line) and the finally recovered (dashed red line) L–L interfaces profile after 10 cycles of application and release of a voltage of 1600 V.

Fig. 7
Fig. 7

Failure of the pinning of the L–L interface. Application of a voltage of 1800 V moves the L–L interface, leading to the failure of the DOL.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = R n l n u

Metrics