Abstract

We present a fully integrated InGaAs/InP negative feedback avalanche diode (NFAD) based free-running single-photon detector (SPD) designed for accurate lidar applications. A free-piston Stirling cooler is used to cool down the NFAD with a large temperature range, and an active hold-off circuit implemented in a field programmable gate array is applied to further suppress the afterpulsing contribution. The key parameters of the free-running SPD including photon detection efficiency (PDE), dark count rate (DCR), afterpulse probability, and maximum count rate (MCR) are dedicatedly optimized for lidar application in practice. We then perform a field experiment using a Mie lidar system with 20 kHz pulse repetition frequency to compare the performance between the free-running InGaAs/InP SPD and a commercial superconducting nanowire single-photon detector (SNSPD). Our detector exhibits good performance with 1.6 Mcps MCR (0.6 μs hold-off time), 10% PDE, 950 cps DCR, and 18% afterpulse probability over 50 μs period. Such performance is worse than the SNSPD with 60% PDE and 300 cps DCR. However, after performing a specific algorithm that we have developed for afterpulse and count rate corrections, the lidar system performance in terms of range-corrected signal (Pr2) distribution using our SPD agrees very well with the result using the SNSPD, with only a relative error of ∼2%. Due to the advantages of low-cost and small size of InGaAs/InP NFADs, such detector provides a practical solution for accurate lidar applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit

Wen-Hao Jiang, Jian-Hong Liu, Yin Liu, Ge Jin, Jun Zhang, and Jian-Wei Pan
Opt. Lett. 42(24) 5090-5093 (2017)

Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution

Jian Ma, Bing Bai, Liu-Jun Wang, Cun-Zhu Tong, Ge Jin, Jun Zhang, and Jian-Wei Pan
Appl. Opt. 55(27) 7497-7502 (2016)

Dynamic range extension for photon counting arrays

Ivan Michel Antolovic, Claudio Bruschini, and Edoardo Charbon
Opt. Express 26(17) 22234-22248 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Lisenko, M. M. Kugeiko, and V. V. Khomich, “Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions,” Atmos. Ocean. Opt. 29, 288 (2016).
    [Crossref]
  2. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
    [Crossref] [PubMed]
  3. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  4. X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22, 16267–16272 (2014).
    [Crossref] [PubMed]
  5. J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56, 2195–2200 (2017).
    [Crossref] [PubMed]
  6. H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector,” Opt. Lett. 40, 1579–1582 (2015).
    [Crossref] [PubMed]
  7. L. Hogstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24, 5152–5161 (2016).
    [Crossref]
  8. M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24, 19322–19336 (2016)
    [Crossref] [PubMed]
  9. H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. W. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41, 5218–5221 (2016).
    [Crossref] [PubMed]
  10. M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
    [Crossref]
  11. J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
    [Crossref]
  12. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14, 10043–10049 (2006).
    [Crossref] [PubMed]
  13. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
    [Crossref]
  14. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17, 6275–6282 (2009).
    [Crossref] [PubMed]
  15. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
    [Crossref]
  16. Y. Nambu, S. Takahashi, K. Yoshino, A. Tanaka, M. Fujiwara, M. Sasaki, A. Tajima, S. Yorozu, and A. Tomita, “Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution,” Opt. Express 19, 20531–20541 (2011).
    [Crossref] [PubMed]
  17. X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
    [Crossref] [PubMed]
  18. N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
    [Crossref]
  19. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
    [Crossref]
  20. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007).
    [Crossref]
  21. X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18, 7010–7018 (2010).
    [Crossref] [PubMed]
  22. P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
    [Crossref]
  23. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011).
    [Crossref] [PubMed]
  24. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46, 7120–7131 (2007).
    [Crossref] [PubMed]
  25. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20, 15286–15300 (2012).
    [Crossref] [PubMed]
  26. H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22, 21775–21789 (2014).
    [Crossref] [PubMed]
  27. H. Xia, M. Shangguan, G. Shentu, C. Wang, J. Qiu, M. Zheng, X. Xie, X. Dou, Q. Zhang, and J. W. Pan, “Brillouin optical time-domain reflectometry using up-conversion single-photon detector,” Opt. Commun. 381, 37–42 (2016).
    [Crossref]
  28. J. Rarity, T. Wall, K. Ridley, P. Owens, and P. Tapster, “Single-photon counting for the 1300–1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39, 6746–6753 (2000).
    [Crossref]
  29. R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
    [Crossref]
  30. M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44, 430–434 (2008).
    [Crossref]
  31. C. Hu, M. Liu, X. Zheng, and J. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46, 35–39 (2010).
    [Crossref]
  32. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
    [Crossref]
  33. J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45, 792–799 (2009).
    [Crossref]
  34. M. A. Itzler, X. Jiang, B. Nymann, and K. Slomkowski, “InP-based negative feedback avalanche diodes,” Proc. SPIE,  7222, 72221K (2009).
    [Crossref]
  35. M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Progress in self-quenching InP-based single photon detectors,” Proc. SPIE,  7608, 760829 (2010).
    [Crossref]
  36. X. Jiang, M. A. Itzler, K. O’Donnell, M. Entwistle, and K. Slomkowski, “InGaAs/InP negative feedback avalanche diodes,” Proc. SPIE,  8033, 8033K (2011).
  37. Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
    [Crossref] [PubMed]
  38. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
    [Crossref]
  39. http://www.idquantique.com/photon-counting/photon-counting-modules/id220/

2017 (1)

2016 (5)

2015 (2)

2014 (3)

2013 (2)

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

2012 (4)

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
[Crossref]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20, 15286–15300 (2012).
[Crossref] [PubMed]

Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
[Crossref] [PubMed]

2011 (5)

X. Jiang, M. A. Itzler, K. O’Donnell, M. Entwistle, and K. Slomkowski, “InGaAs/InP negative feedback avalanche diodes,” Proc. SPIE,  8033, 8033K (2011).

M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011).
[Crossref] [PubMed]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Y. Nambu, S. Takahashi, K. Yoshino, A. Tanaka, M. Fujiwara, M. Sasaki, A. Tajima, S. Yorozu, and A. Tomita, “Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution,” Opt. Express 19, 20531–20541 (2011).
[Crossref] [PubMed]

2010 (5)

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
[Crossref]

X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18, 7010–7018 (2010).
[Crossref] [PubMed]

P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[Crossref]

C. Hu, M. Liu, X. Zheng, and J. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46, 35–39 (2010).
[Crossref]

M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Progress in self-quenching InP-based single photon detectors,” Proc. SPIE,  7608, 760829 (2010).
[Crossref]

2009 (5)

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45, 792–799 (2009).
[Crossref]

M. A. Itzler, X. Jiang, B. Nymann, and K. Slomkowski, “InP-based negative feedback avalanche diodes,” Proc. SPIE,  7222, 72221K (2009).
[Crossref]

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17, 6275–6282 (2009).
[Crossref] [PubMed]

2008 (1)

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44, 430–434 (2008).
[Crossref]

2007 (3)

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46, 7120–7131 (2007).
[Crossref] [PubMed]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

2006 (1)

2000 (1)

Acerbi, F.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Adachi, S.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Barreiro, C.

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

Bienfang, J. C.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Buller, G. S.

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[Crossref]

Campbell, J.

C. Hu, M. Liu, X. Zheng, and J. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46, 35–39 (2010).
[Crossref]

Campbell, J. C.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44, 430–434 (2008).
[Crossref]

Chen, S.

Chen, X.

Chen, Z. B.

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

Cheng, T.

Cova, S.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Dong, J.

Dou, X.

H. Xia, M. Shangguan, G. Shentu, C. Wang, J. Qiu, M. Zheng, X. Xie, X. Dou, Q. Zhang, and J. W. Pan, “Brillouin optical time-domain reflectometry using up-conversion single-photon detector,” Opt. Commun. 381, 37–42 (2016).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24, 19322–19336 (2016)
[Crossref] [PubMed]

H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. W. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41, 5218–5221 (2016).
[Crossref] [PubMed]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector,” Opt. Lett. 40, 1579–1582 (2015).
[Crossref] [PubMed]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22, 21775–21789 (2014).
[Crossref] [PubMed]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20, 15286–15300 (2012).
[Crossref] [PubMed]

Du, D. B.

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Entwistle, M.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

X. Jiang, M. A. Itzler, K. O’Donnell, M. Entwistle, and K. Slomkowski, “InGaAs/InP negative feedback avalanche diodes,” Proc. SPIE,  8033, 8033K (2011).

Eraerds, P.

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
[Crossref]

P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[Crossref]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Fejer, M. M.

Fix, A.

Fujiwara, M.

Gautier, J.-D.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45, 792–799 (2009).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Gisin, N.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
[Crossref]

P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[Crossref]

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45, 792–799 (2009).
[Crossref]

Gu, X.

Guinnard, O.

N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
[Crossref]

Hamel, D. R.

Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
[Crossref] [PubMed]

Han, Y.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

He, Y.

Heinrichs, A. K.

Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
[Crossref] [PubMed]

Hogstedt, L.

Houlmann, R.

N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
[Crossref]

Hu, C.

C. Hu, M. Liu, X. Zheng, and J. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46, 35–39 (2010).
[Crossref]

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44, 430–434 (2008).
[Crossref]

Hu, D.

Inoue, S.

Itzler, M.

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[Crossref]

Itzler, M. A.

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
[Crossref] [PubMed]

X. Jiang, M. A. Itzler, K. O’Donnell, M. Entwistle, and K. Slomkowski, “InGaAs/InP negative feedback avalanche diodes,” Proc. SPIE,  8033, 8033K (2011).

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Progress in self-quenching InP-based single photon detectors,” Proc. SPIE,  7608, 760829 (2010).
[Crossref]

M. A. Itzler, X. Jiang, B. Nymann, and K. Slomkowski, “InP-based negative feedback avalanche diodes,” Proc. SPIE,  7222, 72221K (2009).
[Crossref]

Jennewein, T.

Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
[Crossref] [PubMed]

Jia, X.

Jiang, M.

Jiang, X.

Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
[Crossref] [PubMed]

X. Jiang, M. A. Itzler, K. O’Donnell, M. Entwistle, and K. Slomkowski, “InGaAs/InP negative feedback avalanche diodes,” Proc. SPIE,  8033, 8033K (2011).

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Progress in self-quenching InP-based single photon detectors,” Proc. SPIE,  7608, 760829 (2010).
[Crossref]

M. A. Itzler, X. Jiang, B. Nymann, and K. Slomkowski, “InP-based negative feedback avalanche diodes,” Proc. SPIE,  7222, 72221K (2009).
[Crossref]

Jin, G.

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

Kardynal, B. E.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

Khomich, V. V.

S. A. Lisenko, M. M. Kugeiko, and V. V. Khomich, “Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions,” Atmos. Ocean. Opt. 29, 288 (2016).
[Crossref]

Kobayashi, T.

Kong, W.

Korzh, B.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

Kugeiko, M. M.

S. A. Lisenko, M. M. Kugeiko, and V. V. Khomich, “Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions,” Atmos. Ocean. Opt. 29, 288 (2016).
[Crossref]

Legre, M.

Li, H.

Liang, X. L.

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

Liang, Y.

Lisenko, S. A.

S. A. Lisenko, M. M. Kugeiko, and V. V. Khomich, “Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions,” Atmos. Ocean. Opt. 29, 288 (2016).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Liu, J. H.

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

Liu, M.

C. Hu, M. Liu, X. Zheng, and J. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46, 35–39 (2010).
[Crossref]

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44, 430–434 (2008).
[Crossref]

Liu, X.

Lunghi, T.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
[Crossref]

Lv, C.

Ma, J.

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Migdall, A. L.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Nambu, Y.

Namekata, N.

Nymann, B.

M. A. Itzler, X. Jiang, B. Nymann, and K. Slomkowski, “InP-based negative feedback avalanche diodes,” Proc. SPIE,  7222, 72221K (2009).
[Crossref]

O’Donnell, K.

X. Jiang, M. A. Itzler, K. O’Donnell, M. Entwistle, and K. Slomkowski, “InGaAs/InP negative feedback avalanche diodes,” Proc. SPIE,  8033, 8033K (2011).

Onat, B. M.

M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Progress in self-quenching InP-based single photon detectors,” Proc. SPIE,  7608, 760829 (2010).
[Crossref]

Owens, P.

Pan, J. W.

H. Xia, M. Shangguan, G. Shentu, C. Wang, J. Qiu, M. Zheng, X. Xie, X. Dou, Q. Zhang, and J. W. Pan, “Brillouin optical time-domain reflectometry using up-conversion single-photon detector,” Opt. Commun. 381, 37–42 (2016).
[Crossref]

H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. W. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41, 5218–5221 (2016).
[Crossref] [PubMed]

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24, 19322–19336 (2016)
[Crossref] [PubMed]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector,” Opt. Lett. 40, 1579–1582 (2015).
[Crossref] [PubMed]

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

Pan, Z.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44, 430–434 (2008).
[Crossref]

Pedersen, C.

Pelc, J. S.

Peng, W.

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Qiu, J.

Rarity, J.

Ren, M.

Restelli, A.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Ridley, K.

Rochas, A.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

Sasaki, M.

Sasamori, S.

Shangguan, M.

Sharpe, A. W.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Shen, F.

Shentu, G.

Shields, A. J.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

Shu, Z.

Slomkowski, K.

X. Jiang, M. A. Itzler, K. O’Donnell, M. Entwistle, and K. Slomkowski, “InGaAs/InP negative feedback avalanche diodes,” Proc. SPIE,  8033, 8033K (2011).

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Progress in self-quenching InP-based single photon detectors,” Proc. SPIE,  7608, 760829 (2010).
[Crossref]

M. A. Itzler, X. Jiang, B. Nymann, and K. Slomkowski, “InP-based negative feedback avalanche diodes,” Proc. SPIE,  7222, 72221K (2009).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stucki, D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

Sun, D.

Tajima, A.

Takahashi, S.

Tanaka, A.

Tapster, P.

Tashima, M. M.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44, 430–434 (2008).
[Crossref]

Thew, R.

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45, 792–799 (2009).
[Crossref]

Thew, R. T.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

Tidemand-Lichtenberg, P.

Tomita, A.

Tosi, A.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Walenta, N.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
[Crossref]

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
[Crossref]

Wall, T.

Wang, C.

Wang, Q.

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

Wang, Z.

Warburton, R. E.

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[Crossref]

Wirth, M.

Wu, E.

Wu, G.

Wu, J.

Xia, H.

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24, 19322–19336 (2016)
[Crossref] [PubMed]

H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. W. Pan, “Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer,” Opt. Lett. 41, 5218–5221 (2016).
[Crossref] [PubMed]

H. Xia, M. Shangguan, G. Shentu, C. Wang, J. Qiu, M. Zheng, X. Xie, X. Dou, Q. Zhang, and J. W. Pan, “Brillouin optical time-domain reflectometry using up-conversion single-photon detector,” Opt. Commun. 381, 37–42 (2016).
[Crossref]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector,” Opt. Lett. 40, 1579–1582 (2015).
[Crossref] [PubMed]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22, 21775–21789 (2014).
[Crossref] [PubMed]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20, 15286–15300 (2012).
[Crossref] [PubMed]

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46, 7120–7131 (2007).
[Crossref] [PubMed]

Xia, X.

Xie, X.

Xue, X.

Yan, Z.

Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
[Crossref] [PubMed]

Yang, X.

Yang, Y.

Yorozu, S.

Yoshino, K.

You, L.

Yuan, Z. L.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

Zappa, F.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Zbinden, H.

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
[Crossref]

P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[Crossref]

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45, 792–799 (2009).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

Zeng, H.

Zhang, J.

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector,” Opt. Lett. 40, 1579–1582 (2015).
[Crossref] [PubMed]

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol. 28, 952–964 (2010).
[Crossref]

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45, 792–799 (2009).
[Crossref]

Zhang, L.

Zhang, Q.

Zhang, W.

Zhao, R.

Zheng, M.

H. Xia, M. Shangguan, G. Shentu, C. Wang, J. Qiu, M. Zheng, X. Xie, X. Dou, Q. Zhang, and J. W. Pan, “Brillouin optical time-domain reflectometry using up-conversion single-photon detector,” Opt. Commun. 381, 37–42 (2016).
[Crossref]

Zheng, X.

C. Hu, M. Liu, X. Zheng, and J. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46, 35–39 (2010).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (6)

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

Atmos. Ocean. Opt. (1)

S. A. Lisenko, M. M. Kugeiko, and V. V. Khomich, “Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions,” Atmos. Ocean. Opt. 29, 288 (2016).
[Crossref]

IEEE J. Quantum Electron. (3)

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAsP-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45, 792–799 (2009).
[Crossref]

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44, 430–434 (2008).
[Crossref]

C. Hu, M. Liu, X. Zheng, and J. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46, 35–39 (2010).
[Crossref]

J. Appl. Phys. (1)

N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, and N. Gisin, “Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature,” J. Appl. Phys. 112, 063106 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[Crossref]

Light Sci. Appl. (1)

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Opt. Commun. (1)

H. Xia, M. Shangguan, G. Shentu, C. Wang, J. Qiu, M. Zheng, X. Xie, X. Dou, Q. Zhang, and J. W. Pan, “Brillouin optical time-domain reflectometry using up-conversion single-photon detector,” Opt. Commun. 381, 37–42 (2016).
[Crossref]

Opt. Express (10)

M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011).
[Crossref] [PubMed]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20, 15286–15300 (2012).
[Crossref] [PubMed]

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22, 21775–21789 (2014).
[Crossref] [PubMed]

X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express 22, 16267–16272 (2014).
[Crossref] [PubMed]

L. Hogstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24, 5152–5161 (2016).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. W. Pan, “All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer,” Opt. Express 24, 19322–19336 (2016)
[Crossref] [PubMed]

N. Namekata, S. Sasamori, and S. Inoue, “800 MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14, 10043–10049 (2006).
[Crossref] [PubMed]

N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17, 6275–6282 (2009).
[Crossref] [PubMed]

X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18, 7010–7018 (2010).
[Crossref] [PubMed]

Y. Nambu, S. Takahashi, K. Yoshino, A. Tanaka, M. Fujiwara, M. Sasaki, A. Tajima, S. Yorozu, and A. Tomita, “Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution,” Opt. Express 19, 20531–20541 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (4)

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010).
[Crossref]

M. A. Itzler, X. Jiang, B. Nymann, and K. Slomkowski, “InP-based negative feedback avalanche diodes,” Proc. SPIE,  7222, 72221K (2009).
[Crossref]

M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Progress in self-quenching InP-based single photon detectors,” Proc. SPIE,  7608, 760829 (2010).
[Crossref]

X. Jiang, M. A. Itzler, K. O’Donnell, M. Entwistle, and K. Slomkowski, “InGaAs/InP negative feedback avalanche diodes,” Proc. SPIE,  8033, 8033K (2011).

Rev. Sci. Instrum. (3)

Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum. 83, 073105 (2012).
[Crossref] [PubMed]

X. L. Liang, J. H. Liu, Q. Wang, D. B. Du, J. Ma, G. Jin, Z. B. Chen, J. Zhang, and J. W. Pan, “Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating,” Rev. Sci. Instrum. 83, 083111 (2012).
[Crossref] [PubMed]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Other (1)

http://www.idquantique.com/photon-counting/photon-counting-modules/id220/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of aerosol lidar using free-running InGaAs/InP single-photon detector. DFB: distributed feedback diode; EOM: electro-optic modulator; EDFA: erbium-doped fiber amplifier; LMAF: large-mode-area fiber; FBG: fiber bragg grating; NFAD: negative feedback avalanche diode; SNSPD: superconducting nanowire single-photon detector; MCS: multi-channel scaler.
Fig. 2
Fig. 2 Design diagram (a) and photo (b) of the free-running InGaAs/InP single-photon detector system. LNA: low-noise amplifier; OPA: operational amplifier; FPGA: field-programmable gate array; FPSC: free-piston Stirling cooler.
Fig. 3
Fig. 3 Experimental backscattering signal with hold-off time of 0.6 μs (a) and 2 μs (b) in the InGaAs/InP single-photon detector. (c) Simulation illustration of the ringing effect. It is assumed that the input intensity is a step signal from 0 to 107 photons with a rising time of 2 μs and the hold-off time of detector is 2 μs. (d) The plot of maximum relative overshoot error as a function of hold-off time.
Fig. 4
Fig. 4 Experimental setup for characterizing the free-running InGaAs/InP SPD. PG: pulse generator; LD: laser diode; PM: power meter; ATT: attenuator; TDC: time-to-digital converter.
Fig. 5
Fig. 5 Experimental result (square symbol) and fitted curve (line) of afterpulse probability distribution with 10% PDE and 0.6 μs hold-off time at 223 K.
Fig. 6
Fig. 6 Flow diagram of the correction algorithm. R(i), Pap(i) represent the measured detector count rate, afterpulse probability in bin i, respectively. Rap(i), R1(i) and R2(i) represent the calculated afterpulse count rate, count rate with afterpulse correction, and count rate with both corrections in in bin i, respectively.
Fig. 7
Fig. 7 The detector count rate (a) and normalized Pr2 (b) as a function of range in the field lidar experiment using SNSPD (green lines), and InGaAs/InP NFAD (red circle symbols), respectively. The results using InGaAs/InP NFAD are further corrected (blue square symbols) by the afterpulse and count rate correction algorithm. (c) Given the measured results using SNSPD as a reference, the relative error of normalized Pr2 as a function of range using InGaAs/InP NFAD without (red circle symbols) and with (blue square symbols) correction.

Tables (1)

Tables Icon

Table 1 The calibration results of dark count rate and afterpulse probability at different temperatures (T) with 10% PDE.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I η = R s 1 R s τ DCR .
Err os = R o R s R s .
r d = R 1 R τ .
PDE = 1 μ ln ( 1 S 1 f ) ,
P ap = S 2 S 1 r d ( 1 S 2 τ ) S 1 .
P ap ( t ) = A 1 Exp ( t / τ 1 ) + A 2 Exp ( t / τ 2 ) + A 3 Exp ( t / τ 3 ) + c ,
R ap ( j ) = i A ( i , j ) ,
A ( i , j ) = R ( i ) P nc ( i , j ) P nap ( i , j ) P ap ( j ; i ) ,
P nc ( i , j ) = Exp [ k = i j R ( k ) bin w ] ,
P nap ( i , j ) = Exp [ k = 0 j i 1 P ap ( k ) ] ,
R 1 ( i ) = R ( i ) R a p ( i ) ,
R 2 ( i ) = R 1 ( i ) 1 R ( i ) τ DCR ( i ) .

Metrics