Abstract

The paper presents a proof-of-concept polarization-sensitive swept source optical coherence tomography (OCT) system that performs measurements of the retardance as well as of the axis orientation of a linear birefringent sample. The system performs single input state polarization-sensitive OCT and employs an optical module based on optically passive elements such as two beam displacers and a Faraday rotator. Our implementation of the PS-OCT system does not need any calibration step to compensate for the polarimetric effect of the fibers, and its operation does not require a balanced polarization-diversity detector. The optical module allows measurement of the two polarization properties of the sample via two measurements which are performed simultaneously.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit

Bernhard Baumann, WooJhon Choi, Benjamin Potsaid, David Huang, Jay S. Duker, and James G. Fujimoto
Opt. Express 20(9) 10229-10241 (2012)

Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation

Masahiro Yamanari, Shuichi Makita, and Yoshiaki Yasuno
Opt. Express 16(8) 5892-5906 (2008)

Simplified method for polarization-sensitive optical coherence tomography

Jonathan E. Roth, Jennifer A. Kozak, Siavash Yazdanfar, Andrew M. Rollins, and Joseph A. Izatt
Opt. Lett. 26(14) 1069-1071 (2001)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Hee, E. A. Swanson, J. G. Fujimoto, and D. Huang, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9(6), 903–908 (1992).
    [Crossref]
  2. M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express 16(17), 13032–13041 (2008).
    [Crossref] [PubMed]
  3. M. Zurauskas and A. G. Podoleanu, “Multiplexing-based polarization sensitive en-face optical coherence tomography,” J. Biomed. Opt. 18(10), 106010 (2013).
    [Crossref] [PubMed]
  4. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
    [Crossref] [PubMed]
  5. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
    [Crossref]
  6. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
    [Crossref] [PubMed]
  7. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
    [Crossref] [PubMed]
  8. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
    [Crossref] [PubMed]
  9. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27(20), 1803–1805 (2002).
    [Crossref]
  10. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
    [Crossref] [PubMed]
  11. W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5(8), 2798–2809 (2014).
    [Crossref] [PubMed]
  12. N. Lippok, M. Villiger, C. Jun, and B. E. Bouma, “Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing,” Opt. Lett. 40(9), 2025–2028 (2015).
    [Crossref] [PubMed]
  13. M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38(6), 923–925 (2013).
    [Crossref] [PubMed]
  14. K. Morishita and K. Yamazaki, “Wavelength and polarization dependences of fused fiber couplers,” J. Lightwave Technol. 29(3), 330–334 (2011).
    [Crossref]
  15. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
    [Crossref] [PubMed]
  16. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
    [Crossref]
  17. M. J. Marques, S. Rivet, A. Bradu, and A. Podoleanu, “Polarization-sensitive optical coherence tomography system tolerant to fiber disturbances using a line camera,” Opt. Lett. 40(16), 3858–3861 (2015).
    [Crossref] [PubMed]
  18. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26(14), 1069–1071 (2001).
    [Crossref]
  19. S. Rivet, M. J. Marques, A. Bradu, and A. Podoleanu, “Optical module to extend any Fourier-domain optical coherence tomography system into a polarisation-sensitive system,” J. Opt. 18(6), 065607 (2016).
    [Crossref]
  20. S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
    [Crossref] [PubMed]
  21. A. Bradu, S. Rivet, and A. Podoleanu, “Master/slave interferometry–ideal tool for coherence revival swept source optical coherence tomography,” Biomed. Opt. Express 7(7), 2453–2468 (2016).
    [Crossref] [PubMed]
  22. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
    [Crossref] [PubMed]
  23. M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6, 28771 (2016).
    [Crossref] [PubMed]
  24. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
    [Crossref] [PubMed]

2016 (4)

S. Rivet, M. J. Marques, A. Bradu, and A. Podoleanu, “Optical module to extend any Fourier-domain optical coherence tomography system into a polarisation-sensitive system,” J. Opt. 18(6), 065607 (2016).
[Crossref]

S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
[Crossref] [PubMed]

A. Bradu, S. Rivet, and A. Podoleanu, “Master/slave interferometry–ideal tool for coherence revival swept source optical coherence tomography,” Biomed. Opt. Express 7(7), 2453–2468 (2016).
[Crossref] [PubMed]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6, 28771 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

2013 (3)

2012 (1)

2011 (2)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

K. Morishita and K. Yamazaki, “Wavelength and polarization dependences of fused fiber couplers,” J. Lightwave Technol. 29(3), 330–334 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

2007 (1)

2004 (2)

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
[Crossref]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

2002 (1)

2001 (1)

1992 (1)

M. R. Hee, E. A. Swanson, J. G. Fujimoto, and D. Huang, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9(6), 903–908 (1992).
[Crossref]

Akkin, T.

Al-Qaisi, M. K.

Baumann, B.

Bouma, B. E.

Braaf, B.

Bradu, A.

Cable, A. E.

Cense, B.

Chen, T. C.

Chen, Z.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Choi, W.

de Boer, J. F.

de Groot, M.

Duker, J. S.

Endo, T.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
[Crossref]

Feuchter, T.

Fujimoto, J. G.

Götzinger, E.

Grulkowski, I.

Haindl, R.

Hee, M. R.

M. R. Hee, E. A. Swanson, J. G. Fujimoto, and D. Huang, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9(6), 903–908 (1992).
[Crossref]

Hitzenberger, C. K.

Huai-en, L. H.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Huang, D.

Itoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
[Crossref]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27(20), 1803–1805 (2002).
[Crossref]

Izatt, J. A.

Jayaraman, V.

Jun, C.

Jung, W. Q.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Katada, C.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
[Crossref]

Keikhanzadeh, K.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Kirk, R. W.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6, 28771 (2016).
[Crossref] [PubMed]

Kozak, J. A.

Leick, L.

Lippok, N.

Liu, J. J.

Lorenser, D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6, 28771 (2016).
[Crossref] [PubMed]

Lu, C. D.

Makita, S.

Maria, M.

Marques, M. J.

S. Rivet, M. J. Marques, A. Bradu, and A. Podoleanu, “Optical module to extend any Fourier-domain optical coherence tomography system into a polarisation-sensitive system,” J. Opt. 18(6), 065607 (2016).
[Crossref]

M. J. Marques, S. Rivet, A. Bradu, and A. Podoleanu, “Polarization-sensitive optical coherence tomography system tolerant to fiber disturbances using a line camera,” Opt. Lett. 40(16), 3858–3861 (2015).
[Crossref] [PubMed]

McLaughlin, R. A.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6, 28771 (2016).
[Crossref] [PubMed]

Morishita, K.

Mujat, M.

Mutoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
[Crossref]

Nadkarni, S.

Nelson, J. S.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Oh, W.-Y.

Park, B. H.

Park, H.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Pircher, M.

Podoleanu, A.

Podoleanu, A. G.

M. Zurauskas and A. G. Podoleanu, “Multiplexing-based polarization sensitive en-face optical coherence tomography,” J. Biomed. Opt. 18(10), 106010 (2013).
[Crossref] [PubMed]

Potsaid, B.

Quirk, B. C.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6, 28771 (2016).
[Crossref] [PubMed]

Rivet, S.

Rollins, A. M.

Roth, J. E.

Sampson, D. D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6, 28771 (2016).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Srinivas, S. M.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Sutoh, Y.

Swanson, E. A.

M. R. Hee, E. A. Swanson, J. G. Fujimoto, and D. Huang, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9(6), 903–908 (1992).
[Crossref]

Takahashi, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
[Crossref]

Torzicky, T.

Trasischker, W.

Vakoc, B. J.

Vermeer, K. A.

Vienola, K. V.

Villiger, M.

Yamanari, M.

Yamazaki, K.

Yasuno, Y.

Yatagai, T.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
[Crossref]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27(20), 1803–1805 (2002).
[Crossref]

Yazdanfar, S.

Zhang, E. Z.

Zhang, J.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Zotter, S.

Zurauskas, M.

M. Zurauskas and A. G. Podoleanu, “Multiplexing-based polarization sensitive en-face optical coherence tomography,” J. Biomed. Opt. 18(10), 106010 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85(15), 3023–3025 (2004).
[Crossref]

Biomed. Opt. Express (3)

J. Biomed. Opt. (2)

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, L. H. Huai-en, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

M. Zurauskas and A. G. Podoleanu, “Multiplexing-based polarization sensitive en-face optical coherence tomography,” J. Biomed. Opt. 18(10), 106010 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. (1)

S. Rivet, M. J. Marques, A. Bradu, and A. Podoleanu, “Optical module to extend any Fourier-domain optical coherence tomography system into a polarisation-sensitive system,” J. Opt. 18(6), 065607 (2016).
[Crossref]

J. Opt. Soc. Am. B: Opt. Phys. (1)

M. R. Hee, E. A. Swanson, J. G. Fujimoto, and D. Huang, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys. 9(6), 903–908 (1992).
[Crossref]

Opt. Express (7)

M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express 16(17), 13032–13041 (2008).
[Crossref] [PubMed]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[Crossref] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref]

S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
[Crossref] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
[Crossref] [PubMed]

Opt. Lett. (6)

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
[Crossref] [PubMed]

M. J. Marques, S. Rivet, A. Bradu, and A. Podoleanu, “Polarization-sensitive optical coherence tomography system tolerant to fiber disturbances using a line camera,” Opt. Lett. 40(16), 3858–3861 (2015).
[Crossref] [PubMed]

J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26(14), 1069–1071 (2001).
[Crossref]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27(20), 1803–1805 (2002).
[Crossref]

N. Lippok, M. Villiger, C. Jun, and B. E. Bouma, “Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing,” Opt. Lett. 40(9), 2025–2028 (2015).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38(6), 923–925 (2013).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6, 28771 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Swept-source (SS), polarization-sensitive OCT system with the POM installed in the sample arm. The dashed rectangle corresponds to a fiber-based SS-OCT system; POM, passive optical module; SXY, galvanometer scanning head; SL, scanning lens; SMC1-2, single-mode fiber couplers; FC1-3, fiber collimators; PC, fiber-based polarization controller; BPD, balanced photo-detector. All fibers are single mode fibers. |Sin〉 describes the field returning to the fiber-based part of the interferometer. The polarization state is circular after the POM.

Fig. 2
Fig. 2

Passive optical module (POM) processing of waves travelling in (a) the forward direction (from the fiber collimator FC1 to the galvo-scanner SXY) and in (b) the backward direction (from the galvo-scanner SXY to the fiber collimator FC1). LP, linear polarizer oriented at 22.5° according to |ey〉; FR, Faraday rotator that induces a 22.5° rotation of the polarization states; BD1 and BD2, beam displacers oriented along |ey〉; DG, delay glass block; HWP and QWP, half-wave plate and quarter-wave plate respectively oriented at 45° according to |ey〉. The split of paths in each BD is shown with white arrows indicated on their sides. |eback〉 is the sample polarization state after traversing the quarter-wave plate. |Sin〉 is the polarization state of light returned by the POM from the sample.

Fig. 3
Fig. 3

Comparison of Fourier transform (FT) and complex master slave (CMS) calculations on the channeled spectrum I(ν) delivered by the BPD unit, for a mirror (respectively (a) and (c)) and for a phantom made from a layer of pressure-sensitive tape coupled to a mirror (respectively (b) and (d)).

Fig. 4
Fig. 4

Schematic representation of the CMS procedure mixing the two sets of digital local oscillators, which correspond to the two orthogonal polarization channels, with the channeled spectra I(ν) obtained when the sample is imaged.

Fig. 5
Fig. 5

Experimental drop-off of the peak amplitude versus distance z.

Fig. 6
Fig. 6

Measurements of the Berek retardance versus the position of its indicator J. The black line corresponds to the theoretical values of the retardance according to J. Between the two experimental data sets (shown as circles and triangles), the Berek compensator was rotated by 45° around the propagation axis.

Fig. 7
Fig. 7

Measurement of the Berek angle orientation using Eq. (7) (vertical axis) according to the Berek angle orientation θBerek read on the rotation stage (horizontal axis).

Fig. 8
Fig. 8

(a) Sketch of the birefringent sample comprised of a piece of glass on which 3 strips of pressure-sensitive tape (PST) are attached in cascade; (b) B-Scan OCT images inferred using the CMS calculation of the channeled spectra according to the lateral position x, sub-images (b1) and (b2) corresponding to the optical path of the blue and red components in Fig. 2(b) respectively; (c) B-scan of sample retardance; (d) B-scan of the accumulated sample retardance; (e) B-scan of the net axis orientation.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

| e b a c k = sin φ e 2 i θ | e x + cos φ | e y .
| S i n = 1 2 ( sin φ e 2 i θ e i Δ 2 π c v + cos φ ) | e p o l ,
F { I ( v ) } = I D C + 1 2 cos φ ( z 0 ) r ( z 0 ) PSF [ 2 ( z z 0 ) c ] + 1 2 sin φ ( z 0 ) e i 2 θ ( z 0 ) r ( z 0 ) PSF [ 2 ( z z 0 Δ / 2 ) c ] + c c ,
A ^ 1 ( z 0 ) = 1 2 cos φ ( z 0 ) r ( z 0 ) PSF ( 0 ) ,
A ^ 2 ( z 0 ) = 1 2 sin φ ( z 0 ) e i 2 θ ( z 0 ) r ( z 0 ) PSF ( 0 ) .
P S F ( 0 ) = r o u t ( v ) | e o u t ( v ) d v ,
φ ( z 0 ) = arctan [ | A ^ 2 ( z 0 ) A ^ 1 ( z 0 ) | ] ,
θ ( z 0 ) = arg [ A ^ 2 ( z 0 ) A ^ 1 ( z 0 ) ] / 2 + m π ,

Metrics