Abstract

A photonic-based true time delay (TTD) phased array antenna (PAA) with ultra-fast angle scan is proposed and experimentally demonstrated. A tunable TTD is realized using a wavelength-swept laser and an array of dispersive elements. The key novelty of our work is the ultra-fast angle scan using an ultra-fast wavelength-swept laser source, which is constructed by a gated multi-wavelength laser (MWL) and a dispersion compensation fiber (DCF). In our experiments, a wavelength-sweep time between two adjacent wavelengths is only several nanoseconds for wavelength spacing of 2.4, and 3.2 nm. We successfully realized an ultra-fast angle scan from 0 to 43° with a step of 8.8° in 12.48 ns.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic dual RF beam reception of an X band phased array antenna using a photonic crystal fiber-based true-time-delay beamformer

Harish Subbaraman, Maggie Yihong Chen, and Ray T. Chen
Appl. Opt. 47(34) 6448-6452 (2008)

Optical true time delay unit for multi-beamforming

Xingwei Ye, Fangzheng Zhang, and Shilong Pan
Opt. Express 23(8) 10002-10008 (2015)

Continuously tunable true-time delay lines based on a one-dimensional grating waveguide for beam steering in phased array antennas

Gencheng Wang, Tingge Dai, Jianfei Jiang, Xiaoqing Guo, Bei Chen, Yuehai Wang, Hui Yu, Xiaoqing Jiang, and Jianyi Yang
Appl. Opt. 57(18) 4998-5003 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Rihaczek, Principles of High-Resolution Radar (McGraw-Hill, 1969), 184–185.
  2. J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(12), 2201–2205 (1993).
    [Crossref]
  3. R. Babbitt, T. Koscica, W. Drach, and L. Didomenico, “Ferroelectric phase shifters and their performance in microwave phased array antennas,” Integr. Ferroelectr. 8(1–2), 65–76 (1995).
    [Crossref]
  4. A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” Micorwave and Guided wave Letters, 9(12), 517–519 (1999).
    [Crossref]
  5. C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
    [Crossref]
  6. D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
    [Crossref]
  7. Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” J. Photon. Technol. Lett 14(8), 1172–1174 (2002).
    [Crossref]
  8. Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete- Chirped fiber grating prism,” Opt. Commun. 207(1), 177–187 (2002).
    [Crossref]
  9. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35(26), 5293–5300 (1996).
    [Crossref] [PubMed]
  10. Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
    [Crossref]
  11. D. T. Tong and M. C. Wu, “Transmit/receive module of multiwavelength optically controlled phased-array antennas,” J. Photon. Technol. Lett 10(7), 1018–1020 (1998).
    [Crossref]
  12. Y. Chen and R. T. Chen, “A fully packaged true time delay module for a K-band phased array antenna system demonstration,” J. Photon. Technol. Lett 14(8), 1175–1177 (2002).
    [Crossref]
  13. J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2/spl times/2 optical MEMS switches and fiber delay lines,” J. Photon. Technol. Lett 16(5), 1364–1366 (2004).
    [Crossref]
  14. X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
    [Crossref] [PubMed]
  15. H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
    [Crossref]
  16. H. Jeon and H. Lee, “Photonic true-time delay for phased-array antenna system using dispersion compensation module and a multiwavelength fiber laser,” J. Opt. Soc. Korea 18(4), 406–413 (2014).
    [Crossref]
  17. P. Wu, S. Tang, and D. E. Raible, “A prototype high-speed optically-steered X-band phased array antenna,” Opt. Express 21(26), 32599–32604 (2013).
    [Crossref] [PubMed]
  18. Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
    [Crossref] [PubMed]
  19. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [Crossref] [PubMed]
  20. S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9399–9406 (2006).
    [Crossref] [PubMed]
  21. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [Crossref] [PubMed]
  22. D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
    [Crossref]
  23. J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
    [Crossref]
  24. O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond scan-angle switching photonic beamformer with flat RF response in the C and X bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
    [Crossref]
  25. N. Shi, M. Li, Y. Deng, L. Zhang, S. Sun, J. Tang, W. Li, and N. Zhu, “Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar,” Opt. Express 24(13), 14438–14450 (2016).
    [Crossref] [PubMed]
  26. M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
    [Crossref]
  27. J. Capmany, “Single-shot incoherent optical processing of microwave signals: opening the path to low cost high performance analog photonics,” Sci. Bull. 62(9), 652–653 (2017).
    [Crossref]

2017 (2)

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

J. Capmany, “Single-shot incoherent optical processing of microwave signals: opening the path to low cost high performance analog photonics,” Sci. Bull. 62(9), 652–653 (2017).
[Crossref]

2016 (1)

2015 (2)

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
[Crossref] [PubMed]

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

2014 (1)

2013 (2)

P. Wu, S. Tang, and D. E. Raible, “A prototype high-speed optically-steered X-band phased array antenna,” Opt. Express 21(26), 32599–32604 (2013).
[Crossref] [PubMed]

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

2010 (1)

2008 (3)

2006 (1)

S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9399–9406 (2006).
[Crossref] [PubMed]

2005 (2)

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[Crossref] [PubMed]

2004 (2)

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2/spl times/2 optical MEMS switches and fiber delay lines,” J. Photon. Technol. Lett 16(5), 1364–1366 (2004).
[Crossref]

2003 (1)

2002 (3)

Y. Chen and R. T. Chen, “A fully packaged true time delay module for a K-band phased array antenna system demonstration,” J. Photon. Technol. Lett 14(8), 1175–1177 (2002).
[Crossref]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” J. Photon. Technol. Lett 14(8), 1172–1174 (2002).
[Crossref]

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete- Chirped fiber grating prism,” Opt. Commun. 207(1), 177–187 (2002).
[Crossref]

1999 (1)

A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” Micorwave and Guided wave Letters, 9(12), 517–519 (1999).
[Crossref]

1998 (1)

D. T. Tong and M. C. Wu, “Transmit/receive module of multiwavelength optically controlled phased-array antennas,” J. Photon. Technol. Lett 10(7), 1018–1020 (1998).
[Crossref]

1996 (1)

1995 (1)

R. Babbitt, T. Koscica, W. Drach, and L. Didomenico, “Ferroelectric phase shifters and their performance in microwave phased array antennas,” Integr. Ferroelectr. 8(1–2), 65–76 (1995).
[Crossref]

1993 (1)

J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(12), 2201–2205 (1993).
[Crossref]

Antoine, J.

Asano, M.

S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9399–9406 (2006).
[Crossref] [PubMed]

Azana, J.

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

Babbitt, R.

R. Babbitt, T. Koscica, W. Drach, and L. Didomenico, “Ferroelectric phase shifters and their performance in microwave phased array antennas,” Integr. Ferroelectr. 8(1–2), 65–76 (1995).
[Crossref]

Barzilay, S.

Bernacil, M.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[Crossref]

Bouma, B. E.

Capmany, J.

J. Capmany, “Single-shot incoherent optical processing of microwave signals: opening the path to low cost high performance analog photonics,” Sci. Bull. 62(9), 652–653 (2017).
[Crossref]

Chalfant, C. H.

J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(12), 2201–2205 (1993).
[Crossref]

Chang, P. H.

J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(12), 2201–2205 (1993).
[Crossref]

Chen, M. Y.

H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
[Crossref]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

Chen, R. T.

H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
[Crossref]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

Y. Chen and R. T. Chen, “A fully packaged true time delay module for a K-band phased array antenna system demonstration,” J. Photon. Technol. Lett 14(8), 1175–1177 (2002).
[Crossref]

Chen, Y.

Y. Chen and R. T. Chen, “A fully packaged true time delay module for a K-band phased array antenna system demonstration,” J. Photon. Technol. Lett 14(8), 1175–1177 (2002).
[Crossref]

Coward, J. F.

J. F. Coward, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(12), 2201–2205 (1993).
[Crossref]

DeKelaita, A.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[Crossref]

Deng, Y.

Derickson, D.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[Crossref]

Didomenico, L.

R. Babbitt, T. Koscica, W. Drach, and L. Didomenico, “Ferroelectric phase shifters and their performance in microwave phased array antennas,” Integr. Ferroelectr. 8(1–2), 65–76 (1995).
[Crossref]

Dolfi, D.

Drach, W.

R. Babbitt, T. Koscica, W. Drach, and L. Didomenico, “Ferroelectric phase shifters and their performance in microwave phased array antennas,” Integr. Ferroelectr. 8(1–2), 65–76 (1995).
[Crossref]

Ehmke, J.

A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” Micorwave and Guided wave Letters, 9(12), 517–519 (1999).
[Crossref]

Eshelman, S.

A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” Micorwave and Guided wave Letters, 9(12), 517–519 (1999).
[Crossref]

Fan, C.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Fujimoto, J.

Gao, X. L.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Goldsmith, C. L.

A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” Micorwave and Guided wave Letters, 9(12), 517–519 (1999).
[Crossref]

Granger, P.

Gu, W. Y.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Howley, B.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

Hsu, K.

Huang, S. G.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Huber, R.

Huignard, J. P.

Jeon, H.

Jiang, Y.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

Joffre, P.

Johanssen, L.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[Crossref]

Kim, B. G.

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2/spl times/2 optical MEMS switches and fiber delay lines,” J. Photon. Technol. Lett 16(5), 1364–1366 (2004).
[Crossref]

Koscica, T.

R. Babbitt, T. Koscica, W. Drach, and L. Didomenico, “Ferroelectric phase shifters and their performance in microwave phased array antennas,” Integr. Ferroelectr. 8(1–2), 65–76 (1995).
[Crossref]

LaRochelle, S.

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

Lee, B. S.

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2/spl times/2 optical MEMS switches and fiber delay lines,” J. Photon. Technol. Lett 16(5), 1364–1366 (2004).
[Crossref]

Lee, C.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

Lee, H.

Li, M.

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

N. Shi, M. Li, Y. Deng, L. Zhang, S. Sun, J. Tang, W. Li, and N. Zhu, “Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar,” Opt. Express 24(13), 14438–14450 (2016).
[Crossref] [PubMed]

Li, W.

Lin, W. P.

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Liu, Y.

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
[Crossref] [PubMed]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” J. Photon. Technol. Lett 14(8), 1172–1174 (2002).
[Crossref]

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete- Chirped fiber grating prism,” Opt. Commun. 207(1), 177–187 (2002).
[Crossref]

Maher, B.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[Crossref]

Malacarne, A.

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

Malczewski, A.

A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” Micorwave and Guided wave Letters, 9(12), 517–519 (1999).
[Crossref]

Ngo, N. Q.

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

O’Connor, S.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[Crossref]

Oh, W. Y.

Pan, S.

Philippet, D.

Pillans, B.

A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” Micorwave and Guided wave Letters, 9(12), 517–519 (1999).
[Crossref]

Raible, D. E.

Raz, O.

Rotman, R.

Shi, N.

Shi, Z.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

Shin, J. D.

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2/spl times/2 optical MEMS switches and fiber delay lines,” J. Photon. Technol. Lett 16(5), 1364–1366 (2004).
[Crossref]

Shishkov, M.

Subbaraman, H.

Sun, S.

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

N. Shi, M. Li, Y. Deng, L. Zhang, S. Sun, J. Tang, W. Li, and N. Zhu, “Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar,” Opt. Express 24(13), 14438–14450 (2016).
[Crossref] [PubMed]

Sysak, M. N.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[Crossref]

Taira, K.

Tang, J.

Tang, S.

Tearney, G. J.

Tjin, S. C.

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

Tong, D. T.

D. T. Tong and M. C. Wu, “Transmit/receive module of multiwavelength optically controlled phased-array antennas,” J. Photon. Technol. Lett 10(7), 1018–1020 (1998).
[Crossref]

Tur, M.

Vakoc, B. J.

Wojtkowski, M.

Wu, M. C.

D. T. Tong and M. C. Wu, “Transmit/receive module of multiwavelength optically controlled phased-array antennas,” J. Photon. Technol. Lett 10(7), 1018–1020 (1998).
[Crossref]

Wu, P.

Yamashita, S.

S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9399–9406 (2006).
[Crossref] [PubMed]

Yang, D. H.

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Yang, J.

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
[Crossref] [PubMed]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” J. Photon. Technol. Lett 14(8), 1172–1174 (2002).
[Crossref]

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete- Chirped fiber grating prism,” Opt. Commun. 207(1), 177–187 (2002).
[Crossref]

Yang, J. L.

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

Yao, J.

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
[Crossref] [PubMed]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” J. Photon. Technol. Lett 14(8), 1172–1174 (2002).
[Crossref]

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete- Chirped fiber grating prism,” Opt. Commun. 207(1), 177–187 (2002).
[Crossref]

Ye, X.

Zhang, F.

Zhang, H. Y.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Zhang, L.

Zhou, J.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Zhou, Q.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

Zhu, N.

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

N. Shi, M. Li, Y. Deng, L. Zhang, S. Sun, J. Tang, W. Li, and N. Zhu, “Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar,” Opt. Express 24(13), 14438–14450 (2016).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

Integr. Ferroelectr. (1)

R. Babbitt, T. Koscica, W. Drach, and L. Didomenico, “Ferroelectric phase shifters and their performance in microwave phased array antennas,” Integr. Ferroelectr. 8(1–2), 65–76 (1995).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Korea (1)

J. Photon. Technol. Lett (5)

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” J. Photon. Technol. Lett 17(1), 187–189 (2005).
[Crossref]

D. T. Tong and M. C. Wu, “Transmit/receive module of multiwavelength optically controlled phased-array antennas,” J. Photon. Technol. Lett 10(7), 1018–1020 (1998).
[Crossref]

Y. Chen and R. T. Chen, “A fully packaged true time delay module for a K-band phased array antenna system demonstration,” J. Photon. Technol. Lett 14(8), 1175–1177 (2002).
[Crossref]

J. D. Shin, B. S. Lee, and B. G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2/spl times/2 optical MEMS switches and fiber delay lines,” J. Photon. Technol. Lett 16(5), 1364–1366 (2004).
[Crossref]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” J. Photon. Technol. Lett 14(8), 1172–1174 (2002).
[Crossref]

Micorwave and Guided wave Letters, (1)

A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” Micorwave and Guided wave Letters, 9(12), 517–519 (1999).
[Crossref]

Opt. Commun. (2)

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete- Chirped fiber grating prism,” Opt. Commun. 207(1), 177–187 (2002).
[Crossref]

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time- delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[Crossref]

Sci. Bull. (2)

M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Sci. Bull. 62(4), 242–248 (2017).
[Crossref]

J. Capmany, “Single-shot incoherent optical processing of microwave signals: opening the path to low cost high performance analog photonics,” Sci. Bull. 62(9), 652–653 (2017).
[Crossref]

Other (1)

A. W. Rihaczek, Principles of High-Resolution Radar (McGraw-Hill, 1969), 184–185.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic architecture of the proposed ultra-fast wavelength-swept laser source. MWL: multi-wavelength laser; PC: polarization controller; MZM: Mach-Zehnder modulator; LNA: low-noise amplifier; AWG: arbitrary waveform generator; DCF: dispersion compensation fiber.
Fig. 2
Fig. 2 The schematic optical spectra of the (a) multi-wavelength optical signal gated by an MZM and (b) then dispersed by a length of DCF.
Fig. 3
Fig. 3 The measured (a) optical spectrum of the 4-channel wavelength-swept laser source, (b) the waveform of the electrical pulse with a time duration of 2.72 ns, and (c) the detected waveform of the dispersed and gated optical signal.
Fig. 4
Fig. 4 The measured (a) optical spectrum and (b) the detected multi-pulse with a time duration of 2.81 ns after removing λ2 and λ4. The measured (c) optical spectrum and (d) the detected multi-pulse with a time duration of 5.62 ns after removing λ3 and λ4.
Fig. 5
Fig. 5 The measured (a) optical spectrum of the 6-channel wavelength-swept laser source, (b) the waveform of the electrical pulse with a time duration of 2.04 ns, (c) the detected waveform of the dispersed and gated optical signal, (d) the detected multi-pulse with a temporal width of 2.08 ns.
Fig. 6
Fig. 6 Schematic architecture of the proposed photonic-based PAA system. PC: polarization controller; MZM: Mach-Zehnder modulator; LNA: low-noise amplifier; AWG: arbitrary waveform generator; DCF: dispersion compensation fiber; EDFA: erbium-doped optical fiber amplifier; PS: optical power splitter; DCF: dispersion compensation fiber; SMF: single mode fiber; PD: photodetector; PT: phase trimmer; ATT: attenuator.
Fig. 7
Fig. 7 Experimental layout of the ultra-fast angle scan PAA system.
Fig. 8
Fig. 8 The received signals of the PAA system with wavelength spacing of 3.2 nm.
Fig. 9
Fig. 9 The received signals of the PAA system with wavelength spacing of 2.4 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ τ = D D C F L Δ λ
Δ t = Δ τ , T = N Δ τ
θ = arc sin [ c d ( L i + 1 L i ) ( D D C F D S M F ) ( λ - λ r ) ] , ( i = 1 , 2 , 3 7 )

Metrics