Abstract

Nowadays, wide-field of view plasmonic structured illumination method (WFPSIM) has been extensively studied and experimentally demonstrated in biological researches. Normally, noble metal structures are used in traditional WFPSIM to support ultra-high wave-vector of SPs and an imaging resolution enhancement of 3-4 folds can be achieved. To further improve the imaging resolution of WFPSIM, we hereby propose a wide-field optical nanoimaging method based on a hybrid graphene on meta-surface structure (GMS) model. It is found that an ultra-high wave-vector of graphene SPs can be excited by a metallic nanoslits array with localized surface plasmon enhancement. As a result, a standing wave surface plasmons (SW-SPs) interference pattern with a period of 11 nm for a 980 nm incident wavelength can be obtained. The potential application of the GMS for wide-field of view super-resolution imaging is discussed followed by simulation results which show that an imaging resolution of sub-10 nm can be achieved. The demonstrated method paves a new route for wide field optical nanoimaging, with applications e.g. in biological research to study biological processes occurring in cell membrane.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method

Shun Cao, Taisheng Wang, Qiang Sun, Bingliang Hu, and Weixing Yu
Opt. Express 25(4) 3863-3874 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer Berlin Heidelberg, 1988).
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  3. A. Polman and H. A. Atwater, “Plasmonics: optics at the nanoscale,” Mater. Today 8(1), 56 (2005).
    [Crossref]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  5. N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
    [Crossref]
  6. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  7. X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
    [Crossref]
  8. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
    [Crossref] [PubMed]
  9. A. Yanai and U. Levy, “Subdiffraction-limited imaging based on longitudinal modes in a spatially dispersive slab,” Phys. Rev. B 90(7), 075107 (2014).
    [Crossref]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  11. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  12. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  13. E. Chung, Y.-H. Kim, W. T. Tang, C. J. R. Sheppard, and P. T. C. So, “Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves,” Opt. Lett. 34(15), 2366–2368 (2009).
    [Crossref] [PubMed]
  14. A. Sentenac, K. Belkebir, H. Giovannini, and P. C. Chaumet, “High-resolution total-internal-reflection fluorescence microscopy using periodically nanostructured glass slides,” J. Opt. Soc. Am. A 26(12), 2550–2557 (2009).
    [Crossref] [PubMed]
  15. P. S. Tan, X. C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97(24), 241109 (2010).
    [Crossref]
  16. Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
    [Crossref]
  17. F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
    [Crossref] [PubMed]
  18. F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
    [Crossref] [PubMed]
  19. A. Sentenac, K. Belkebir, H. Giovannini, and P. C. Chaumet, “Subdiffraction resolution in total internal reflection fluorescence microscopy with a grating substrate,” Opt. Lett. 33(3), 255–257 (2008).
    [Crossref] [PubMed]
  20. B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
    [Crossref] [PubMed]
  21. Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
    [Crossref]
  22. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  23. W. L. Gao, F. Z. Fang, Y. M. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
    [Crossref]
  24. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
    [Crossref]
  25. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
    [Crossref] [PubMed]
  26. S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
    [Crossref] [PubMed]
  27. S. Cao, T. Wang, Q. Sun, B. Hu, and W. Yu, “Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method,” Opt. Express 25(4), 3863–3874 (2017).
    [Crossref] [PubMed]
  28. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  29. V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light Sci. Appl. 3(7), e191 (2014).
    [Crossref]
  30. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [PubMed]
  31. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  32. N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev, and F. J. García de Abajo, “The magnetic response of graphene split-ring metamaterials,” Light Sci. Appl. 2(7), e78 (2013).
    [Crossref]
  33. S.-A. Biehs and G. S. Agarwal, “Large enhancement of Förster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
    [Crossref]
  34. K. A. Velizhanin and T. V. Shahbazyan, “Long-range plasmon-assisted energy transfer over doped graphene,” Phys. Rev. B 86(24), 245432 (2012).
    [Crossref]
  35. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
    [Crossref] [PubMed]
  36. X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
    [Crossref]
  37. P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
    [Crossref] [PubMed]
  38. B. H. Cheng, K. J. Chang, Y. C. Lan, and D. P. Tsai, “Actively controlled super-resolution using graphene-based structure,” Opt. Express 22(23), 28635–28644 (2014).
    [Crossref] [PubMed]
  39. D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
    [Crossref] [PubMed]
  40. Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
    [Crossref] [PubMed]
  41. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  42. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
    [Crossref]
  43. P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  44. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  46. X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
    [Crossref]
  47. W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
    [Crossref]
  48. Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
    [Crossref]
  49. M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5(4), e16070 (2016).
    [Crossref]
  50. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
    [Crossref] [PubMed]
  51. M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
    [Crossref]
  52. P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
    [Crossref]
  53. S. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9(12), 2159 (1992).
    [Crossref]
  54. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
    [Crossref] [PubMed]

2017 (1)

2016 (5)

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref]

M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5(4), e16070 (2016).
[Crossref]

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

2015 (4)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

W. L. Gao, F. Z. Fang, Y. M. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Y. Cai, J. Zhu, Q. H. Liu, T. Lin, J. Zhou, L. Ye, and Z. Cai, “Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits,” Opt. Express 23(25), 32318–32328 (2015).
[Crossref] [PubMed]

2014 (7)

B. H. Cheng, K. J. Chang, Y. C. Lan, and D. P. Tsai, “Actively controlled super-resolution using graphene-based structure,” Opt. Express 22(23), 28635–28644 (2014).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

A. Yanai and U. Levy, “Subdiffraction-limited imaging based on longitudinal modes in a spatially dispersive slab,” Phys. Rev. B 90(7), 075107 (2014).
[Crossref]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light Sci. Appl. 3(7), e191 (2014).
[Crossref]

2013 (4)

N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev, and F. J. García de Abajo, “The magnetic response of graphene split-ring metamaterials,” Light Sci. Appl. 2(7), e78 (2013).
[Crossref]

S.-A. Biehs and G. S. Agarwal, “Large enhancement of Förster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
[Crossref]

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

2012 (5)

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

K. A. Velizhanin and T. V. Shahbazyan, “Long-range plasmon-assisted energy transfer over doped graphene,” Phys. Rev. B 86(24), 245432 (2012).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

2011 (3)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

2010 (3)

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
[Crossref] [PubMed]

P. S. Tan, X. C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97(24), 241109 (2010).
[Crossref]

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (5)

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

A. Sentenac, K. Belkebir, H. Giovannini, and P. C. Chaumet, “Subdiffraction resolution in total internal reflection fluorescence microscopy with a grating substrate,” Opt. Lett. 33(3), 255–257 (2008).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (4)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

2006 (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

2005 (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

A. Polman and H. A. Atwater, “Plasmonics: optics at the nanoscale,” Mater. Today 8(1), 56 (2005).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1995 (1)

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

1992 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agard, D. A.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Agarwal, G. S.

S.-A. Biehs and G. S. Agarwal, “Large enhancement of Förster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
[Crossref]

Alekseyev, L. V.

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Alù, A.

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Apalkov, V.

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light Sci. Appl. 3(7), e191 (2014).
[Crossref]

Atwater, H. A.

A. Polman and H. A. Atwater, “Plasmonics: optics at the nanoscale,” Mater. Today 8(1), 56 (2005).
[Crossref]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Bartal, G.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Belkebir, K.

Belov, P. A.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

Biehs, S.-A.

S.-A. Biehs and G. S. Agarwal, “Large enhancement of Förster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
[Crossref]

Blau, Y.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Bu, J.

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

Cai, Y.

Cai, Z.

Cao, S.

S. Cao, T. Wang, Q. Sun, B. Hu, and W. Yu, “Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method,” Opt. Express 25(4), 3863–3874 (2017).
[Crossref] [PubMed]

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Chang, K. J.

Chaumet, P. C.

Chen, H.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Chen, J.

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

Chen, P.-Y.

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Cheng, B. H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chung, E.

Cremer, C.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Dai, Q.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

David, A.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Ding, B.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Dolev, S.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Efetov, D. K.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Fang, F. Z.

W. L. Gao, F. Z. Fang, Y. M. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fang, X.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Gao, W. L.

W. L. Gao, F. Z. Fang, Y. M. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

García de Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev, and F. J. García de Abajo, “The magnetic response of graphene split-ring metamaterials,” Light Sci. Appl. 2(7), e78 (2013).
[Crossref]

Ge, J.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Giovannini, H.

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gjonaj, B.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Gnanasammandhan, M. K.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Gong, Q.

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

Gu, Z.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Gustafsson, M. G.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hänninen, P. E.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, R.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Hao, X.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

He, M.

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

He, Q.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref]

He, Y.

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

Hell, S.

Hell, S. W.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Ho, P. C.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, B.

S. Cao, T. Wang, Q. Sun, B. Hu, and W. Yu, “Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method,” Opt. Express 25(4), 3863–3874 (2017).
[Crossref] [PubMed]

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

Hu, D.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Hu, H.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Huang, E.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Idris, N. M.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Isaac, B.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Jacob, Z.

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jiang, B.

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Kim, P.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

Kim, Y.-H.

Ku, Y.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Kuang, C.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Lan, Y. C.

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Levy, U.

A. Yanai and U. Levy, “Subdiffraction-limited imaging based on longitudinal modes in a spatially dispersive slab,” Phys. Rev. B 90(7), 075107 (2014).
[Crossref]

Li, E.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Li, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Li, P.

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

Li, S.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Li, Y.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Li, Z.

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Liao, H.

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Lin, T.

Lin, X.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Lin, Z.

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

Liu, H.

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

Liu, K.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Liu, Q. H.

Liu, R.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, X.

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Liu, Y. M.

W. L. Gao, F. Z. Fang, Y. M. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Liu, Z.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Lu, D.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

MacDonald, K. F.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

Mahendran, R.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Narimanov, E.

Orenstein, M.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pang, X.

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

Papaioannou, M.

M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Papasimakis, N.

N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev, and F. J. García de Abajo, “The magnetic response of graphene split-ring metamaterials,” Light Sci. Appl. 2(7), e78 (2013).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Plum, E.

M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Polman, A.

A. Polman and H. A. Atwater, “Plasmonics: optics at the nanoscale,” Mater. Today 8(1), 56 (2005).
[Crossref]

Ponsetto, J. L.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Rogers, E. T. F.

M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Salo, J.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Sedat, J. W.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Sentenac, A.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shahbazyan, T. V.

K. A. Velizhanin and T. V. Shahbazyan, “Long-range plasmon-assisted energy transfer over doped graphene,” Phys. Rev. B 86(24), 245432 (2012).
[Crossref]

Shao, L.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Shen, H.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Sheppard, C. J. R.

Snaith, H.

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

So, P. T. C.

Soini, E.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Song, C.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Spektor, G.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Stelzer, E. H. K.

Stockman, M. I.

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light Sci. Appl. 3(7), e191 (2014).
[Crossref]

Sun, C.

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, Q.

Sun, S.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref]

Sun, W.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref]

Sun, Z.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Tan, P. S.

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

P. S. Tan, X. C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97(24), 241109 (2010).
[Crossref]

Tang, W. T.

Taubner, T.

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

Teng, J. H.

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Thongrattanasiri, S.

N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev, and F. J. García de Abajo, “The magnetic response of graphene split-ring metamaterials,” Light Sci. Appl. 2(7), e78 (2013).
[Crossref]

Tittl, A.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Tsai, D. P.

Uzawa, S.

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Valente, J.

M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Velizhanin, K. A.

K. A. Velizhanin and T. V. Shahbazyan, “Long-range plasmon-assisted energy transfer over doped graphene,” Phys. Rev. B 86(24), 245432 (2012).
[Crossref]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Wan, W.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, H.

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

Wang, Q.

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

P. S. Tan, X. C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97(24), 241109 (2010).
[Crossref]

Wang, T.

S. Cao, T. Wang, Q. Sun, B. Hu, and W. Yu, “Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method,” Opt. Express 25(4), 3863–3874 (2017).
[Crossref] [PubMed]

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

Wang, Y.

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

Wei, F.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
[Crossref] [PubMed]

Xiong, Y.

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Xu, W.

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

Xu, Y.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Yanai, A.

A. Yanai and U. Levy, “Subdiffraction-limited imaging based on longitudinal modes in a spatially dispersive slab,” Phys. Rev. B 90(7), 075107 (2014).
[Crossref]

Yang, X.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Ye, L.

Yu, W.

S. Cao, T. Wang, Q. Sun, B. Hu, and W. Yu, “Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method,” Opt. Express 25(4), 3863–3874 (2017).
[Crossref] [PubMed]

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

Yuan, G. H.

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

P. S. Tan, X. C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97(24), 241109 (2010).
[Crossref]

Yuan, X. C.

P. S. Tan, X. C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97(24), 241109 (2010).
[Crossref]

Yuan, X.-C.

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

Yue, S.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhai, F.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Zhang, B.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Zhang, H.

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

Zhang, J.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Zhang, S.

W. L. Gao, F. Z. Fang, Y. M. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

Zhang, X.

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Zheludev, N. I.

M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5(4), e16070 (2016).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev, and F. J. García de Abajo, “The magnetic response of graphene split-ring metamaterials,” Light Sci. Appl. 2(7), e78 (2013).
[Crossref]

Zhou, J.

Zhou, L.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref]

Zhu, J.

ACS Nano (2)

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, and Z. Lin, “Innenrücktitelbild: monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells,” Angew. Chem. Int. Ed. 55, 4367 (2016).
[Crossref]

Appl. Phys. Lett. (5)

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66(13), 1698–1700 (1995).
[Crossref]

Y. Zhang, H. Wang, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Unidirectional launching of surface plasmons at the subwavelength scale,” Appl. Phys. Lett. 105(23), 231101 (2014).
[Crossref]

P. S. Tan, X. C. Yuan, G. H. Yuan, and Q. Wang, “High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices,” Appl. Phys. Lett. 97(24), 241109 (2010).
[Crossref]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

S.-A. Biehs and G. S. Agarwal, “Large enhancement of Förster resonance energy transfer on graphene platforms,” Appl. Phys. Lett. 103(24), 243112 (2013).
[Crossref]

Biophys. J. (1)

L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Opt. Soc. Am. A (2)

Light Sci. Appl. (8)

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci. Appl. 2(10), e108 (2013).
[Crossref]

V. Apalkov and M. I. Stockman, “Proposed graphene nanospaser,” Light Sci. Appl. 3(7), e191 (2014).
[Crossref]

W. L. Gao, F. Z. Fang, Y. M. Liu, and S. Zhang, “Chiral surface waves supported by biaxial hyperbolic metamaterials,” Light Sci. Appl. 4(9), e328 (2015).
[Crossref]

M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5(4), e16070 (2016).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref]

N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev, and F. J. García de Abajo, “The magnetic response of graphene split-ring metamaterials,” Light Sci. Appl. 2(7), e78 (2013).
[Crossref]

Mater. Today (1)

A. Polman and H. A. Atwater, “Plasmonics: optics at the nanoscale,” Mater. Today 8(1), 56 (2005).
[Crossref]

Nano Lett. (6)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
[Crossref] [PubMed]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Med. (1)

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nature (1)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

New J. Phys. (1)

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (5)

A. Yanai and U. Levy, “Subdiffraction-limited imaging based on longitudinal modes in a spatially dispersive slab,” Phys. Rev. B 90(7), 075107 (2014).
[Crossref]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

K. A. Velizhanin and T. V. Shahbazyan, “Long-range plasmon-assisted energy transfer over doped graphene,” Phys. Rev. B 86(24), 245432 (2012).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Plasmonics (1)

Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X.-C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7(3), 427–433 (2012).
[Crossref]

Sci. Rep. (1)

S. Cao, T. Wang, W. Xu, H. Liu, H. Zhang, B. Hu, and W. Yu, “Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution,” Sci. Rep. 6(1), 23460 (2016).
[Crossref] [PubMed]

Science (5)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer Berlin Heidelberg, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic diagram of the hybrid graphene on meta-surface structure. (a) The perspective view and (b) the cross sectional view of the GMS. Vbias denotes the control voltage for setting the chemical potential of graphene.
Fig. 2
Fig. 2 Dispersive optical properties of graphene as a function of chemical potential in near infrared waveband. (a) The normalized real and (b) imaginary part of surface conductivity of graphene, respectively. (c) The real and (d) imaginary part of permittivity of graphene, respectively.
Fig. 3
Fig. 3 (a) The real and imaginary part of permittivity of graphene for μc = 2 eV. (b) The distribution of the electric field in y = 0 plane. (c) The distribution of the electric field in z = 113 nm plane. (d) The distribution of the electrical field intensity along the blue dashed line. (e) The perspective schematic diagram of the simple silver-SiO2 structure. (f) The distribution of the electric field of the simple silver-SiO2 structure in y = 0 plane, with the same parameters of GMS.
Fig. 4
Fig. 4 (a) The schematic diagram of the structure used in the analytic model. εi and di stand for the permittivity and thickness of the material in each layer. (b)The period of plasmonic interference pattern as a function of the incident wavelength as obtained by analytic and numerical methods.
Fig. 5
Fig. 5 The simulation results of the imaging performance for GMS model. Point spread function of (a) reconstructed image in x-direction, (b) a diffraction-limited system, (c) FWHM comparison between conventional lens-based microscopic image (blue curve) and the super-resolution image by sing the GMS (magenta line) in PSIM, (d) Illustration of resolving capability of GMS-PSIM of two POs separated with different distances of 2, 4, 6, 10 and 20 nm in x-direction.
Fig. 6
Fig. 6 The analytical and numerical imaging resolution of GMS-PSIM in the near-infrared waveband. The black circles represent the analytical results, the red line stands for the linear fitting of the analytical results and the blue crosses represent the numerical results.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ g = i e 2 k B T π 2 (ω+i/τ) ( μ c k B T +2ln( e μ c k B T +1))+ i e 2 4π ln| 2 μ c (ω+i/τ) 2 μ c +(ω+i/τ) |
τ= μ c μ e v F 2
ε g =1+i σ g ε 0 ωΔ
k 2z / ε 2 + k 1z / ε 1 k 2z /ε 2 k 1z / ε 1 = e 2 k 2z d 2 k 2z / ε 2 k 3z / ε 3 k 2z / ε 2 + k 3z / ε 3
k iz = β 2 k 0 2 ε i (i=1-3)

Metrics