Abstract

We report and demonstrate a highly-sensitive refractive index (RI) sensor based on a linear-cavity dual-wavelength erbium-doped fiber laser (DWEDFL). The optical spectrum of the laser varies as the external environmental RI changes from 1.3 to 1.335. The DWEDFL has a linear-cavity configuration with two fiber Bragg gratings (FBGs) with central wavelengths < 1 nm apart. Since both FBGs share the same EDF gain medium, gain competition occurs in the cavity. Optical loss of one wavelength can be introduced by immersing the sensing component, a 15 mm micro-fiber (MF), in a solution under test. Experimental results demonstrate a high sensitivity of −231.1 dB/RIU (refractive index unit) and 42.6 dB/RIU in the range from 1.300 to 1.335. The relative power change at the two FBG wavelengths reveals a higher sensitivity of −273.7 dB/RIU with better stability due to reduced light source jitter and external perturbation. Due to its high sensitivity and simple structure, the dual wavelengths gain competition RI sensor has potential applications in chemical and biochemical sensing fields.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

6 July 2017: A typographical correction was made to the title.


OSA Recommended Articles
Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor

Ahmmed A. Rifat, G. A. Mahdiraji, Yong Meng Sua, Rajib Ahmed, Y. G. Shee, and F. R. Mahamd Adikan
Opt. Express 24(3) 2485-2495 (2016)

Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors

Huazhuo Dong, Liheng Chen, Junjie Zhou, Jianhui Yu, Heyuan Guan, Wentao Qiu, Jiangli Dong, Huihui Lu, Jieyuan Tang, Wenguo Zhu, Zhigang Cai, Yi Xiao, Jun Zhang, and Zhe Chen
Opt. Express 25(5) 5352-5365 (2017)

Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation

Yi Dai, Qizhen Sun, Sisi Tan, Jianghai Wo, Jiejun Zhang, and Deming Liu
Opt. Express 20(25) 27367-27376 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36(17), 3425–3427 (2011).
    [Crossref] [PubMed]
  2. Y. Dai, Q. Sun, S. Tan, J. Wo, J. Zhang, and D. Liu, “Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation,” Opt. Express 20(25), 27367–27376 (2012).
    [Crossref] [PubMed]
  3. T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. Grattan, “Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6,” IEEE Sens. J. 16(4), 881–887 (2016).
    [Crossref]
  4. Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
    [Crossref]
  5. E. Udd and W. B. Spillman, Jr., Fiber Optic Sensors: An Introduction for Engineers and Scientists (John Wiley & Sons, 2011).
  6. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
    [Crossref] [PubMed]
  7. H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
    [Crossref]
  8. A. Kapoor and E. K. Sharma, “Long period grating refractive-index sensor: optimal design for single wavelength interrogation,” Appl. Opt. 48(31), G88–G94 (2009).
    [Crossref] [PubMed]
  9. W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
    [Crossref]
  10. J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
    [Crossref] [PubMed]
  11. Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
    [Crossref] [PubMed]
  12. S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature Insensitive Liquid Level Sensor Based on Antiresonant Reflecting Guidance in Silica Tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
    [Crossref]
  13. B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
    [Crossref]
  14. Y. H. Tai and P. K. Wei, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Opt. Lett. 35(7), 944–946 (2010).
    [Crossref] [PubMed]
  15. F. De-Jun, L. Guan-Xiu, L. Xi-Lu, J. Ming-Shun, and S. Qing-Mei, “Refractive index sensor based on plastic optical fiber with tapered structure,” Appl. Opt. 53(10), 2007–2011 (2014).
    [Crossref] [PubMed]
  16. G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, and Y. Zhang, “High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber,” J. Opt. Soc. Am. B 33(7), 1330–1334 (2016).
    [Crossref]
  17. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
    [Crossref] [PubMed]
  18. J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
    [Crossref] [PubMed]
  19. M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber,” J. Lightwave Technol. 32(23), 4035–4039 (2014).
  20. S. Liu, Z. Wang, M. Hou, J. Tian, and J. Xia, “Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing,” Opt. Laser Technol. 82, 53–56 (2016).
    [Crossref]
  21. M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components Interferometer Based on Partially-filled Dual-core Photonic Crystal Fiber for Temperature and Strain Sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
    [Crossref]
  22. S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, “Simple in-line M–Z interferometer based on dual-core photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(19), 1768–1770 (2012).
    [Crossref]
  23. Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
    [Crossref] [PubMed]
  24. X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
    [Crossref]
  25. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
    [Crossref] [PubMed]
  26. H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
    [Crossref] [PubMed]
  27. Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
    [Crossref] [PubMed]
  28. Q. Sun, J. Wang, W. Tong, J. Luo, and D. Liu, “Channel-switchable single-/dual-wavelength single-longitudinal-mode laser and THz beat frequency generation up to 3.6 THz,” Appl. Phys. B 106(2), 373–377 (2012).
    [Crossref]
  29. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
    [Crossref]
  30. M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
    [Crossref]
  31. D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
    [Crossref]
  32. Y. Bai, W. Xiang, P. Zu, X. Shi, and G. Zhang, “Tunable two wavelengths linear-cavity Yb-doped fiber laser based on volume grating” Chinese J. Lasers, 38(11), 1102004–1-8 (2011).
  33. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13(1), 142–147 (2005).
    [Crossref] [PubMed]

2016 (9)

H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

S. Liu, Z. Wang, M. Hou, J. Tian, and J. Xia, “Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing,” Opt. Laser Technol. 82, 53–56 (2016).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components Interferometer Based on Partially-filled Dual-core Photonic Crystal Fiber for Temperature and Strain Sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. Grattan, “Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6,” IEEE Sens. J. 16(4), 881–887 (2016).
[Crossref]

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, and Y. Zhang, “High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber,” J. Opt. Soc. Am. B 33(7), 1330–1334 (2016).
[Crossref]

J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
[Crossref] [PubMed]

S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature Insensitive Liquid Level Sensor Based on Antiresonant Reflecting Guidance in Silica Tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
[Crossref]

2015 (1)

2014 (4)

2013 (3)

2012 (6)

Q. Sun, J. Wang, W. Tong, J. Luo, and D. Liu, “Channel-switchable single-/dual-wavelength single-longitudinal-mode laser and THz beat frequency generation up to 3.6 THz,” Appl. Phys. B 106(2), 373–377 (2012).
[Crossref]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, “Simple in-line M–Z interferometer based on dual-core photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(19), 1768–1770 (2012).
[Crossref]

B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
[Crossref]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
[Crossref] [PubMed]

Y. Dai, Q. Sun, S. Tan, J. Wo, J. Zhang, and D. Liu, “Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation,” Opt. Express 20(25), 27367–27376 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Y. H. Tai and P. K. Wei, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Opt. Lett. 35(7), 944–946 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

2007 (1)

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

2005 (1)

Amo, M. L.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

An, G.

Antonio-Lopez, J. E.

Canales, I.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Cardenas-Sevilla, G. A.

Chan, C. C.

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

Chang, H. Y.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Chang, Y. C.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Chang, Y. L.

Chen, D.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Chen, L. H.

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

Chen, Z.

Chow, K. K.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Chu, D.-K.

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Chu-Zhou, H.-T.

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Cong-Wang,

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Dai, Y.

De-Jun, F.

Dong, X.

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Dong, X.-R.

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Dong, Y.

Duan, J.-A.

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Fu, H.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Fu, M. Y.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Gao, S.

Grattan, K. T.

T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. Grattan, “Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6,” IEEE Sens. J. 16(4), 881–887 (2016).
[Crossref]

Guan, B. O.

Guan-Xiu, L.

Guo, J.

He, S.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Hou, M.

S. Liu, Z. Wang, M. Hou, J. Tian, and J. Xia, “Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing,” Opt. Laser Technol. 82, 53–56 (2016).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components Interferometer Based on Partially-filled Dual-core Photonic Crystal Fiber for Temperature and Strain Sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber,” J. Lightwave Technol. 32(23), 4035–4039 (2014).

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

Hu, J.-Y.

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Hu, T.

Ji, W. B.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Jiao, Y.

Jin, L.

Kapoor, A.

Kashyap, R.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Li,

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Li, B.

Li, J.

Li, S.

Li, Z.

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components Interferometer Based on Partially-filled Dual-core Photonic Crystal Fiber for Temperature and Strain Sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber,” J. Lightwave Technol. 32(23), 4035–4039 (2014).

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, “Simple in-line M–Z interferometer based on dual-core photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(19), 1768–1770 (2012).
[Crossref]

Liao, C. R.

LiKamWa, P.

Lim, A.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Liu, D.

Liu, H. H.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Liu, N.

S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature Insensitive Liquid Level Sensor Based on Antiresonant Reflecting Guidance in Silica Tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
[Crossref]

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, “Simple in-line M–Z interferometer based on dual-core photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(19), 1768–1770 (2012).
[Crossref]

Liu, S.

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components Interferometer Based on Partially-filled Dual-core Photonic Crystal Fiber for Temperature and Strain Sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

S. Liu, Z. Wang, M. Hou, J. Tian, and J. Xia, “Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing,” Opt. Laser Technol. 82, 53–56 (2016).
[Crossref]

S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature Insensitive Liquid Level Sensor Based on Antiresonant Reflecting Guidance in Silica Tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
[Crossref]

M. Hou, Y. Wang, S. Liu, J. Guo, Z. Li, and P. Lu, “Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber,” J. Lightwave Technol. 32(23), 4035–4039 (2014).

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, “Simple in-line M–Z interferometer based on dual-core photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(19), 1768–1770 (2012).
[Crossref]

Liu, W.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Liu, W. F.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Liu, X.

Long, H. Y.

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

López-Higera, J. M.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Lu, C.

Lu, F.

Lu, P.

Lu, W.

Lu, Z.

Luo, H.

Luo, J.

Q. Sun, J. Wang, W. Tong, J. Luo, and D. Liu, “Channel-switchable single-/dual-wavelength single-longitudinal-mode laser and THz beat frequency generation up to 3.6 THz,” Appl. Phys. B 106(2), 373–377 (2012).
[Crossref]

Luo, Y.

Luo-Zhi, Y.-W.

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Martinez-Rios, A.

May-Arrioja, D. A.

Ming-Shun, J.

Monro, T. M.

Monzon-Hernandez, D.

Ng, J.

Ngo, N. Q.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Nguyen, T. H.

T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. Grattan, “Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6,” IEEE Sens. J. 16(4), 881–887 (2016).
[Crossref]

Pang, F.

Perez-Herrera, R. A.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Qing-Mei, S.

Quan, M.

Quan, Z.

Quintela, M. A.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Ran, Y.

Salceda-Delgado, G.

Sanchez-Mondragon, J. J.

Sharma, E. K.

Sheng, H. J.

H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Shum, P. P.

So, P. L.

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

Sun, L. P.

Sun, Q.

Sun, T.

T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. Grattan, “Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6,” IEEE Sens. J. 16(4), 881–887 (2016).
[Crossref]

Sun, X.-Y.

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Tai, Y. H.

Tam, H. Y.

Tan, S.

Tian, J.

Tjin, S. C.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Tong, W.

Q. Sun, J. Wang, W. Tong, J. Luo, and D. Liu, “Channel-switchable single-/dual-wavelength single-longitudinal-mode laser and THz beat frequency generation up to 3.6 THz,” Appl. Phys. B 106(2), 373–377 (2012).
[Crossref]

Vallejo, M. F.

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

Venugopalan, T.

T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. Grattan, “Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6,” IEEE Sens. J. 16(4), 881–887 (2016).
[Crossref]

Villatoro, J.

Wang, D. N.

Wang, J.

Q. Sun, J. Wang, W. Tong, J. Luo, and D. Liu, “Channel-switchable single-/dual-wavelength single-longitudinal-mode laser and THz beat frequency generation up to 3.6 THz,” Appl. Phys. B 106(2), 373–377 (2012).
[Crossref]

Wang, T.

Wang, Y.

Wang, Z.

S. Liu, Z. Wang, M. Hou, J. Tian, and J. Xia, “Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing,” Opt. Laser Technol. 82, 53–56 (2016).
[Crossref]

Warren-Smith, S. C.

Wei, H.

Wei, P. K.

Wei, Y.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

Wen, J.

Wo, J.

Xia, J.

S. Liu, Z. Wang, M. Hou, J. Tian, and J. Xia, “Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing,” Opt. Laser Technol. 82, 53–56 (2016).
[Crossref]

S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature Insensitive Liquid Level Sensor Based on Antiresonant Reflecting Guidance in Silica Tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
[Crossref]

Xi-Lu, L.

Xu, Z.

Yan, X.

Yang, J.

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

Yang, X.

Yao, Y.

Yuan, Z.

Zhang, J.

Zhang, L.

Zhang, X.

Zhang, Y.

Zhao, Y.

Zheng, Y.

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

Zhou,

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Zhou, X.

Appl. Opt. (2)

Appl. Phys. B (1)

Q. Sun, J. Wang, W. Tong, J. Luo, and D. Liu, “Channel-switchable single-/dual-wavelength single-longitudinal-mode laser and THz beat frequency generation up to 3.6 THz,” Appl. Phys. B 106(2), 373–377 (2012).
[Crossref]

Electron. Lett. (1)

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zheng, L. H. Chen, X. Dong, J. Yang, H. Y. Long, P. L. So, and C. C. Chan, “Miniature pH optical fiber sensor based on Fabry–Perot interferometer,” IEEE J. Sel. Top. Quantum Electron. 22(2), 331–335 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (5)

H. Y. Chang, Y. C. Chang, H. J. Sheng, M. Y. Fu, W. F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

S. Liu, N. Liu, Y. Wang, J. Guo, Z. Li, and P. Lu, “Simple in-line M–Z interferometer based on dual-core photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(19), 1768–1770 (2012).
[Crossref]

M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. F. Vallejo, M. L. Amo, and J. M. López-Higera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technol. Lett. 22(6), 368–370 (2010).
[Crossref]

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

IEEE Sens. J. (2)

T. H. Nguyen, T. Venugopalan, T. Sun, and K. T. Grattan, “Intrinsic Fiber Optic pH Sensor for Measurement of pH Values in the Range of 0.5–6,” IEEE Sens. J. 16(4), 881–887 (2016).
[Crossref]

M. Hou, Y. Wang, S. Liu, Z. Li, and P. Lu, “Multi-components Interferometer Based on Partially-filled Dual-core Photonic Crystal Fiber for Temperature and Strain Sensing,” IEEE Sens. J. 16(16), 6192–6196 (2016).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
[Crossref] [PubMed]

Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23(5), 6662–6672 (2015).
[Crossref] [PubMed]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13(1), 142–147 (2005).
[Crossref] [PubMed]

Y. Dai, Q. Sun, S. Tan, J. Wo, J. Zhang, and D. Liu, “Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation,” Opt. Express 20(25), 27367–27376 (2012).
[Crossref] [PubMed]

Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (2)

X.-Y. Sun, D.-K. Chu, X.-R. Dong, H.-T. Chu-Zhou, Li, Y.-W. Luo-Zhi, J.-Y. Hu, Zhou, Cong-Wang, and J.-A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

S. Liu, Z. Wang, M. Hou, J. Tian, and J. Xia, “Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing,” Opt. Laser Technol. 82, 53–56 (2016).
[Crossref]

Opt. Lett. (6)

Other (2)

Y. Bai, W. Xiang, P. Zu, X. Shi, and G. Zhang, “Tunable two wavelengths linear-cavity Yb-doped fiber laser based on volume grating” Chinese J. Lasers, 38(11), 1102004–1-8 (2011).

E. Udd and W. B. Spillman, Jr., Fiber Optic Sensors: An Introduction for Engineers and Scientists (John Wiley & Sons, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of the dual wavelength erbium-doped fiber laser (DWEDFL). Inset: Microscope lateral view of the MNF. VOA: variable optical attenuator; OC: fiber output coupler; WDM: wavelength division multiplexer; EDF: Erbium doped fiber; MF: micro-fiber; OR: optical fiber reflector; OSA: optical spectrum analyzer.

Fig. 2
Fig. 2

Output optical spectrum of the DWEDFL.

Fig. 3
Fig. 3

Output spectrum of our sensor in RI matching solutions with RI 1.300~1.335.

Fig. 4
Fig. 4

Intensity of the peak power at dual wavelengths as a function of the surrounding RI.

Fig. 5
Fig. 5

Dual-wavelength power difference as a function of the surrounding RI.

Fig. 6
Fig. 6

Dual-wavelength power fluctuation and its difference fluctuation in 50 minutes.

Tables (1)

Tables Icon

Table 1 Comparison of sensing performance of our RI sensor with recently reported isotype schemes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g λ i × L = G t h ( λ i ) = δ λ i , i = 1 , 2

Metrics