Abstract

We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of wideband chaos with suppressed time-delay signature by delayed self-interference

Anbang Wang, Yibiao Yang, Bingjie Wang, Beibei Zhang, Lei Li, and Yuncai Wang
Opt. Express 21(7) 8701-8710 (2013)

Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback

Anke Zhao, Ning Jiang, Shiqin Liu, Chenpeng Xue, Jianming Tang, and Kun Qiu
Opt. Express 27(9) 12336-12348 (2019)

Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning

Chih-Hao Cheng, Yi-Cheng Chen, and Fan-Yi Lin
Opt. Express 23(3) 2308-2319 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  2. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  3. K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
    [Crossref]
  4. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
    [Crossref] [PubMed]
  5. Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  6. A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
    [Crossref] [PubMed]
  7. S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
    [Crossref]
  8. M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
    [Crossref]
  9. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
    [Crossref] [PubMed]
  10. Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett. 28(5), 319–321 (2003).
    [Crossref] [PubMed]
  11. A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett. 34(8), 1144–1146 (2009).
    [Crossref] [PubMed]
  12. S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
    [Crossref]
  13. A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
    [Crossref]
  14. Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron. 51(3), 1200106 (2015).
    [Crossref]
  15. S. L. Yan, “Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity,” Chin. Sci. Bull. 55(11), 1007–1012 (2010).
    [Crossref]
  16. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
    [Crossref]
  17. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
    [Crossref] [PubMed]
  18. Z. Q. Zhong, Z. M. Wu, and G. Q. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
    [Crossref]
  19. S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
    [Crossref]
  20. C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41(16), 3690–3693 (2016).
    [Crossref] [PubMed]
  21. S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
    [Crossref]
  22. C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
    [Crossref] [PubMed]
  23. Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(5), 236–242 (2014).
    [Crossref]
  24. M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22(5), 5241–5251 (2014).
    [Crossref] [PubMed]
  25. H. Q. Shen, W. Li, and M. H. Yang, “An optical waveform pre-distortion method based on time domain fractional Fourier transformation,” Opt. Commun. 284(2), 660–664 (2011).
    [Crossref]
  26. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  27. N. Jiang, C. Zhang, and K. Qiu, “Secure passive optical network based on chaos synchronization,” Opt. Lett. 37(21), 4501–4503 (2012).
    [Crossref] [PubMed]
  28. A. Argyris and D. Syvridis, “Performance of open-loop all-optical chaotic communication systems under strong injection condition,” IEEE J. Quantum Electron. 22(5), 1272–1279 (2004).
  29. N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
    [Crossref] [PubMed]
  30. S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
    [Crossref]
  31. F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
    [Crossref]
  32. Y. Gao, Q. Zhuge, W. Wang, X. Xu, J. M. Buset, M. Qiu, M. Morsy-Osman, M. Chagnon, F. Li, L. Wang, C. Lu, A. P. T. Lau, and D. V. Plant, “40 Gb/s CAP32 short reach transmission over 80 km single mode fiber,” Opt. Express 23(9), 11412–11423 (2015).
    [Crossref] [PubMed]
  33. T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24(20), 23439–23449 (2016).
    [Crossref] [PubMed]

2017 (1)

Z. Q. Zhong, Z. M. Wu, and G. Q. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

2016 (4)

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41(16), 3690–3693 (2016).
[Crossref] [PubMed]

T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24(20), 23439–23449 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (3)

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(5), 236–242 (2014).
[Crossref]

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22(5), 5241–5251 (2014).
[Crossref] [PubMed]

2013 (2)

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

2012 (3)

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

N. Jiang, C. Zhang, and K. Qiu, “Secure passive optical network based on chaos synchronization,” Opt. Lett. 37(21), 4501–4503 (2012).
[Crossref] [PubMed]

2011 (2)

H. Q. Shen, W. Li, and M. H. Yang, “An optical waveform pre-distortion method based on time domain fractional Fourier transformation,” Opt. Commun. 284(2), 660–664 (2011).
[Crossref]

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

2010 (1)

S. L. Yan, “Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity,” Chin. Sci. Bull. 55(11), 1007–1012 (2010).
[Crossref]

2009 (5)

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[Crossref] [PubMed]

A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett. 34(8), 1144–1146 (2009).
[Crossref] [PubMed]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref] [PubMed]

2008 (1)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

2007 (1)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

2004 (2)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

A. Argyris and D. Syvridis, “Performance of open-loop all-optical chaotic communication systems under strong injection condition,” IEEE J. Quantum Electron. 22(5), 1272–1279 (2004).

2003 (2)

Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback,” Opt. Lett. 28(5), 319–321 (2003).
[Crossref] [PubMed]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Amano, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

A. Argyris and D. Syvridis, “Performance of open-loop all-optical chaotic communication systems under strong injection condition,” IEEE J. Quantum Electron. 22(5), 1272–1279 (2004).

Aviad, Y.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[Crossref] [PubMed]

Buset, J. M.

Chagnon, M.

Chan, S. C.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Chen, X. F.

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron. 51(3), 1200106 (2015).
[Crossref]

Chen, Y. C.

Cheng, C. H.

Cheng, M.

Citrin, D. S.

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Davis, P.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

Deng, L.

Fischer, I.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gao, Y.

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Guo, X.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

Hirano, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

Hong, Y. H.

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron. 51(3), 1200106 (2015).
[Crossref]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(5), 236–242 (2014).
[Crossref]

Hou, T. T.

Hu, W. S.

Hu, Y.

Inoue, M.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

Jiang, N.

Kanter, I.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[Crossref] [PubMed]

Ke, J. X.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Lau, A. P. T.

Li, F.

Li, G.

Li, H.

Li, J.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

Li, J. F.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

Li, L.

Li, N.

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref] [PubMed]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Li, S. S.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Li, W.

H. Q. Shen, W. Li, and M. H. Yang, “An optical waveform pre-distortion method based on time domain fractional Fourier transformation,” Opt. Commun. 284(2), 660–664 (2011).
[Crossref]

Lin, F. Y.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
[Crossref] [PubMed]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
[Crossref]

Lin, L.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

Lin, S.

Liu, D.

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
[Crossref]

Liu, Q.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Locquet, A.

Lu, C.

Luo, B.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Lv, Y.

Mirasso, C. R.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Morsy-Osman, M.

Naito, S.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

Ohtsubo, J.

Ohyagi, K.

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

Pan, W.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref] [PubMed]

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Plant, D. V.

Qiu, K.

Qiu, M.

Reidler, I.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[Crossref] [PubMed]

Rontani, D.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref] [PubMed]

Rosenbluh, M.

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[Crossref] [PubMed]

Rosso, O. A.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

Sciamanna, M.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref] [PubMed]

Shang, L.

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

Shen, H. Q.

H. Q. Shen, W. Li, and M. H. Yang, “An optical waveform pre-distortion method based on time domain fractional Fourier transformation,” Opt. Commun. 284(2), 660–664 (2011).
[Crossref]

Shore, K. A.

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron. 51(3), 1200106 (2015).
[Crossref]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(5), 236–242 (2014).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Soriano, M. C.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

Spencer, P. S.

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron. 51(3), 1200106 (2015).
[Crossref]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(5), 236–242 (2014).
[Crossref]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

A. Argyris and D. Syvridis, “Performance of open-loop all-optical chaotic communication systems under strong injection condition,” IEEE J. Quantum Electron. 22(5), 1272–1279 (2004).

Takiguchi, Y.

Uchida, A.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

Wang, A.

Wang, A. B.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett. 34(8), 1144–1146 (2009).
[Crossref] [PubMed]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B.

Wang, B. J.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, C.

Wang, J. F.

Wang, L.

Wang, W.

Wang, Y.

Wang, Y. C.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett. 34(8), 1144–1146 (2009).
[Crossref] [PubMed]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wen, A. J.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

Wu, J. G.

Wu, Z. M.

Z. Q. Zhong, Z. M. Wu, and G. Q. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref] [PubMed]

Xia, G. Q.

Z. Q. Zhong, Z. M. Wu, and G. Q. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref] [PubMed]

Xiang, S. Y.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Xu, H.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Xu, X.

Xue, C.

Yan, L. S.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Yan, S. L.

S. L. Yan, “Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity,” Chin. Sci. Bull. 55(11), 1007–1012 (2010).
[Crossref]

Yang, M. H.

H. Q. Shen, W. Li, and M. H. Yang, “An optical waveform pre-distortion method based on time domain fractional Fourier transformation,” Opt. Commun. 284(2), 660–664 (2011).
[Crossref]

Yang, Q.

Yang, X. L.

Yang, Y.

Yang, Y. B.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Yi, L. L.

Yoshimori, S.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

Yoshimura, K.

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

Zhang, B.

Zhang, C.

Zhang, H.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

Zhang, H. X.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

Zhang, L. Y.

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

Zhang, M. J.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Zhong, Z. Q.

Z. Q. Zhong, Z. M. Wu, and G. Q. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

Zhou, P.

Zhu, H. N.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Zhuge, Q.

Zou, X. H.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Zunino, L.

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

Appl. Phys. Lett. (1)

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Chin. Sci. Bull. (1)

S. L. Yan, “Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity,” Chin. Sci. Bull. 55(11), 1007–1012 (2010).
[Crossref]

IEEE J. Quantum Electron. (9)

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[Crossref]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura, and P. Davis, “Characteristics of fast physical random bit generation using chaotic semiconductor lasers,” IEEE J. Quantum Electron. 45(11), 1367–1379 (2009).
[Crossref]

M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47(2), 252–261 (2011).
[Crossref]

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron. 51(3), 1200106 (2015).
[Crossref]

Y. H. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(5), 236–242 (2014).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

A. Argyris and D. Syvridis, “Performance of open-loop all-optical chaotic communication systems under strong injection condition,” IEEE J. Quantum Electron. 22(5), 1272–1279 (2004).

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

IEEE Photonics J. (1)

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

J. Lighwave Technol. (1)

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lighwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Commun. (3)

S. Y. Xiang, W. Pan, L. Y. Zhang, A. J. Wen, L. Shang, H. X. Zhang, and L. Lin, “Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser,” Opt. Commun. 324, 38–46 (2014).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1–3), 173–180 (2003).
[Crossref]

H. Q. Shen, W. Li, and M. H. Yang, “An optical waveform pre-distortion method based on time domain fractional Fourier transformation,” Opt. Commun. 284(2), 660–664 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Photonics Res. (1)

Z. Q. Zhong, Z. M. Wu, and G. Q. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

Phys. Rev. Lett. (1)

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed flat wideband and time delay signature suppressed chaos generation system. SL: semiconductor laser, OC: optical coupler, R: reflector, RF: radio frequency source, Amp: electronic amplifier.
Fig. 2
Fig. 2 Temporal waveforms and RF spectra of the original chaotic signal generated by ECSL [(a) and (b)], the bandwidth enhanced chaotic signal outputted from the optical time lens module [(c) and (d)], and chaotic signal outputted from the time domain fractional Fourier transform module [(e) and (f)].
Fig. 3
Fig. 3 Efficient bandwidth of chaotic signal outputted from the optical time lens module versus the phase modulation index.
Fig. 4
Fig. 4 Efficient bandwidth of chaotic signal outputted from the optical time lens module versus (a) the mixing frequencies of driving signals and (b) the dispersion coefficients.
Fig. 5
Fig. 5 Comparisons of ACF (first column), DMI (second column) and PE (third column) in the original chaos generated by ECSL (first and third rows) and those of the chaos outputted from the optical time lens (OTL) module (second and fourth rows).
Fig. 6
Fig. 6 ACF curves for intensity series and phase series versus the variations of f2 and D2.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H D ( ω ) = K 1 exp ( i 1 2 β 2 L ω 2 ) ,
h D ( t ) = F 1 [ H D ( ω ) ] = K 2 e x p ( i ω 0 2 λ 0 D L t 2 ) ,
h P M ( t ) = exp[ i K P M cos ( 2 π f 1 t ) cos ( 2 π f 2 t )],
h P M ( t ) = e x p ( i π V ( t ) V π ) ,
V ( t ) = K P M V π π cos ( 2 π f 1 t ) cos ( 2 π f 2 t ) .
Δ ω P M ( t ) = K P M π { ( f 1 + f 2 ) sin [ 2 π ( f 1 + f 2 ) t ] + ( f 1 f 2 ) sin [ 2 π ( f 1 f 2 ) t ] } .
| Δ ω P M ( t ) | max = K P M π ( | f 1 + f 2 | + | f 1 f 2 | ) .
C ( Δ t ) = ( S ( t + Δ t ) ) S ( t + Δ t ) ) ( S ( t ) S ( t ) ) ( ( S ( t + Δ t ) S ( t + Δ t ) ) 2 ( S ( t ) S ( t ) ) 2 ) 1 / 2 ,
D ( Δ t )= S ( t ) , S ( t + Δ t ) P [ S ( t ) , S ( t + Δ t ) ] log P [ S ( t ) , S ( t + Δ t ) ] P [ S ( t ) ] P [ S ( t + Δ t ) ]
p ( Ω ) = # { t | t T ( d 1 ) τ ; X t has type Ω } T ( d 1 ) τ

Metrics