Abstract

A 4-channel silicon photonics transceiver array for Point-to-Point (P2P) fiber-to-the-home (FTTH) optical networks at the central office (CO) side is demonstrated. A III-V O-band photodetector array was integrated onto the silicon photonic transmitter through transfer printing technology, showing a polarization-independent responsivity of 0.39 - 0.49 A/W in the O-band. The integrated PDs (30 × 40 μm2 mesa) have a 3 dB bandwidth of 11.5 GHz at −3 V bias. Together with high-speed C-band silicon ring modulators whose bandwidth is up to 15 GHz, operation of the transceiver array at 10 Gbit/s is demonstrated. The use of transfer printing for the integration of the III-V photodetectors allows for an efficient use of III-V material and enables the scalable integration of III-V devices on silicon photonics wafers, thereby reducing their cost.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser

Jing Zhang, Bahawal Haq, James O’Callaghan, Angieska Gocalinska, Emanuele Pelucchi, António José Trindade, Brian Corbett, Geert Morthier, and Gunther Roelkens
Opt. Express 26(7) 8821-8830 (2018)

Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters

Andreas De Groote, Paolo Cardile, Ananth Z. Subramanian, Alin M. Fecioru, Christopher Bower, Danae Delbeke, Roel Baets, and Günther Roelkens
Opt. Express 24(13) 13754-13762 (2016)

Integration of etched facet, electrically pumped, C-band Fabry-Pérot lasers on a silicon photonic integrated circuit by transfer printing

Joan Juvert, Tommaso Cassese, Sarah Uvin, Andreas de Groote, Brad Snyder, Lieve Bogaerts, Geraldine Jamieson, Joris Van Campenhout, Günther Roelkens, and Dries Van Thourhout
Opt. Express 26(17) 21443-21454 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Hatt, O. Zetteberg, K. Ahl, D. Bosshart, R. Montagne, and V. Chillou, “Creating a Brighter Future,” in Proceedings of.FTTH Council Europe Press Conference, (2014).
  2. H. Yamazaki, T. Yamada, K. Suzuki, T. Goh, A. Kaneko, A. Sano, E. Yamada, and Y. Miyamoto, “Integrated 100Gbps PDM-QPSK modulator using a hybrid assembly technique with silica-based PLCs and LiNbO3 phase modulators,” in European Conference on Optical Communication (ECOC, 2008), paper Mo.3.C.1.
  3. R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).
  4. P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).
  5. http://www.europractice-ic.com/SiPhotonics_technology_imec_ISIPP50G.php
  6. T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
    [Crossref]
  7. Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
    [Crossref]
  8. S. Keyvaninia, M. Muneeb, S. Stankovic, R. van Veldhoven, D. van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
    [Crossref]
  9. E. Menard, K. Lee, Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
    [Crossref]
  10. A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
    [Crossref] [PubMed]
  11. R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
    [Crossref]
  12. J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
    [Crossref]
  13. H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
    [Crossref]
  14. D. Vermeulen, T. Spuesens, P. De Heyn, P. Mechet, R. Nötzel, S. Verstuyft, D. Van Thourhout, and G. Roelkens, “III-V/silicon-on-insulator photonic integrated circuit for fiber-to-the-home central office transceivers in a point-to-point network configuration,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010).
    [Crossref]
  15. T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
    [Crossref]
  16. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  17. H. Chen, Advanced Germanium p-i-n Avalanche Photodetectors for Low-power Optical Interconnects (2016), Chap. 1.

2016 (2)

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
[Crossref] [PubMed]

2015 (2)

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

2014 (1)

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

2013 (1)

2012 (2)

J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

2010 (1)

2008 (1)

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

2004 (1)

E. Menard, K. Lee, Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Absil, P.

Ahl, K.

A. Hatt, O. Zetteberg, K. Ahl, D. Bosshart, R. Montagne, and V. Chillou, “Creating a Brighter Future,” in Proceedings of.FTTH Council Europe Press Conference, (2014).

Arakawa, Y.

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Baets, R.

Berggren, J.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Bogaerts, W.

Bosshart, D.

A. Hatt, O. Zetteberg, K. Ahl, D. Bosshart, R. Montagne, and V. Chillou, “Creating a Brighter Future,” in Proceedings of.FTTH Council Europe Press Conference, (2014).

Bower, C.

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
[Crossref] [PubMed]

J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
[Crossref]

Bower, C. A.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Bowers, J. E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Buhl, L.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Butrie, T.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Cardile, P.

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Chen, Y. K.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Chillou, V.

A. Hatt, O. Zetteberg, K. Ahl, D. Bosshart, R. Montagne, and V. Chillou, “Creating a Brighter Future,” in Proceedings of.FTTH Council Europe Press Conference, (2014).

Chuwongin, S.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Corbett, B.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
[Crossref]

Davenport, M.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

De Groote, A.

De Heyn, P.

D. Vermeulen, T. Spuesens, P. De Heyn, P. Mechet, R. Nötzel, S. Verstuyft, D. Van Thourhout, and G. Roelkens, “III-V/silicon-on-insulator photonic integrated circuit for fiber-to-the-home central office transceivers in a point-to-point network configuration,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010).
[Crossref]

Delbeke, D.

Dentai, A.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Dharmarasu, N.

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Fecioru, A.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Fecioru, A. M.

Ferwana, S.

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Gocalinska, A.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Goldfarb, G.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Gubbins, M.

J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
[Crossref]

Hammar, M.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Hatt, A.

A. Hatt, O. Zetteberg, K. Ahl, D. Bosshart, R. Montagne, and V. Chillou, “Creating a Brighter Future,” in Proceedings of.FTTH Council Europe Press Conference, (2014).

Hayakawa, T.

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

Hillmer, H.

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

Iwamoto, S.

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Jhang, Y.

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Justice, J.

J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
[Crossref]

Kato, M.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Keyvaninia, S.

Khang, Y.

E. Menard, K. Lee, Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Kish, F.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Komljenovic, T.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Kuntz, M.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Kusserow, T.

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

Lal, V.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Lambert, D.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Lee, K.

E. Menard, K. Lee, Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Lepage, G.

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Loi, R.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Ma, Z.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Malendevich, R.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

McNicol, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Mechet, P.

D. Vermeulen, T. Spuesens, P. De Heyn, P. Mechet, R. Nötzel, S. Verstuyft, D. Van Thourhout, and G. Roelkens, “III-V/silicon-on-insulator photonic integrated circuit for fiber-to-the-home central office transceivers in a point-to-point network configuration,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010).
[Crossref]

Meitl, M.

J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
[Crossref]

Menard, E.

E. Menard, K. Lee, Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Missey, M.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Montagne, R.

A. Hatt, O. Zetteberg, K. Ahl, D. Bosshart, R. Montagne, and V. Chillou, “Creating a Brighter Future,” in Proceedings of.FTTH Council Europe Press Conference, (2014).

Mooney, M.

J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
[Crossref]

Muneeb, M.

Nagarajan, R.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Nakamura, T.

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

Nilsson, A.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Nötzel, R.

D. Vermeulen, T. Spuesens, P. De Heyn, P. Mechet, R. Nötzel, S. Verstuyft, D. Van Thourhout, and G. Roelkens, “III-V/silicon-on-insulator photonic integrated circuit for fiber-to-the-home central office transceivers in a point-to-point network configuration,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010).
[Crossref]

Nuzzo, R.

E. Menard, K. Lee, Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

O’Callaghan, J.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Pelucchi, E.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Pleumeekers, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Rahn, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Reffle, M.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Robert, C.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Roelkens, G.

Rogers, J.

E. Menard, K. Lee, Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Roycroft, B.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Selvaraja, S.

Seo, J.-H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Shuai, Y.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Spuesens, T.

D. Vermeulen, T. Spuesens, P. De Heyn, P. Mechet, R. Nötzel, S. Verstuyft, D. Van Thourhout, and G. Roelkens, “III-V/silicon-on-insulator photonic integrated circuit for fiber-to-the-home central office transceivers in a point-to-point network configuration,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010).
[Crossref]

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Stankovic, S.

Subramanian, A. Z.

Sun, H.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Tanabe, K.

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Tang, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Trindade, A. J.

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

Tsai, H.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

van Thourhout, D.

van Veldhoven, R.

Vengatesan, B.

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

Verheyen, P.

Vermeulen, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

D. Vermeulen, T. Spuesens, P. De Heyn, P. Mechet, R. Nötzel, S. Verstuyft, D. Van Thourhout, and G. Roelkens, “III-V/silicon-on-insulator photonic integrated circuit for fiber-to-the-home central office transceivers in a point-to-point network configuration,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010).
[Crossref]

Verstuyft, S.

D. Vermeulen, T. Spuesens, P. De Heyn, P. Mechet, R. Nötzel, S. Verstuyft, D. Van Thourhout, and G. Roelkens, “III-V/silicon-on-insulator photonic integrated circuit for fiber-to-the-home central office transceivers in a point-to-point network configuration,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010).
[Crossref]

Welch, D.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Wu, K. T.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Yang, H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Yang, W.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Zetteberg, O.

A. Hatt, O. Zetteberg, K. Ahl, D. Bosshart, R. Montagne, and V. Chillou, “Creating a Brighter Future,” in Proceedings of.FTTH Council Europe Press Conference, (2014).

Zhang, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Zhao, D.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Zhou, W.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Appl. Phys. Lett. (1)

E. Menard, K. Lee, Y. Khang, R. Nuzzo, and J. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

IEEE Photonics J. (1)

R. Loi, J. O’Callaghan, B. Roycroft, C. Robert, A. Fecioru, A. J. Trindade, A. Gocalinska, E. Pelucchi, C. A. Bower, and B. Corbett, “Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates,” IEEE Photonics J. 8(6), 1504810 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Nat. Photonics (2)

J. Justice, C. Bower, M. Meitl, M. Mooney, M. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6(9), 610–614 (2012).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Proc. SPIE (1)

T. Kusserow, S. Ferwana, T. Nakamura, T. Hayakawa, N. Dharmarasu, B. Vengatesan, and H. Hillmer, “Micromachining of InP/InGaAs multiple membrane/airgap structures for tunable optical devices,” Proc. SPIE 6993, 69930B (2008).
[Crossref]

Other (6)

H. Chen, Advanced Germanium p-i-n Avalanche Photodetectors for Low-power Optical Interconnects (2016), Chap. 1.

D. Vermeulen, T. Spuesens, P. De Heyn, P. Mechet, R. Nötzel, S. Verstuyft, D. Van Thourhout, and G. Roelkens, “III-V/silicon-on-insulator photonic integrated circuit for fiber-to-the-home central office transceivers in a point-to-point network configuration,” in 36th European Conference and Exhibition on Optical Communication (ECOC, 2010).
[Crossref]

http://www.europractice-ic.com/SiPhotonics_technology_imec_ISIPP50G.php

A. Hatt, O. Zetteberg, K. Ahl, D. Bosshart, R. Montagne, and V. Chillou, “Creating a Brighter Future,” in Proceedings of.FTTH Council Europe Press Conference, (2014).

H. Yamazaki, T. Yamada, K. Suzuki, T. Goh, A. Kaneko, A. Sano, E. Yamada, and Y. Miyamoto, “Integrated 100Gbps PDM-QPSK modulator using a hybrid assembly technique with silica-based PLCs and LiNbO3 phase modulators,” in European Conference on Optical Communication (ECOC, 2008), paper Mo.3.C.1.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channels, 100Gbit/s per channel, dual polarization conherent QPSK monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference (OFC, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic layout of the III-V-on-silicon FTTH transceiver array, (b) Schematic cross-section of one transceiver. TPD: transparent photodetector.
Fig. 2
Fig. 2 Process flow of transfer-printing-based integration of O-band III-V PDs on silicon photonic integrated circuits. (a) The initial III-V layer stack, (b) Sacrificial layer removal, (c) P contact metal deposition, (d) Definition of the PD mesa, (e) Definition of the second mesa and n-contact metal deposition, (f) Shaping the release area, (g) Encapsulation and tether definition, (h) Under etching of the release layer, (i) Picking up pre-fabricated PDs from the InP substrate, (j) Auto-alignment to grating coupler and printing, (k) BCB planarization, (l) Final metallization.
Fig. 3
Fig. 3 The PDs before and after transfer printing, (a) Microscopic image of a pre-fabricated PD array on III-V source wafer, (b) A zoom-in image of one PD on the source wafer showing the design of the tether structures, (c) Final realized transceiver with bond pad array.
Fig. 4
Fig. 4 (a) The loss of the trancevier (microring, cascaded MMIs and O band PD) in C-band excluding the loss from grating couplers, (b) The ring modulator resonate wavelength shift versus bias voltage.
Fig. 5
Fig. 5 Photocurrent of the transfer printed O-band PDs (a) at 1310 nm, (b) over the range of 1270 nm-1350 nm, (c) at 1550 nm (including the photodetector dark current).
Fig. 6
Fig. 6 Small-signal response. (a) Measured |S21|2 curves of ring modulators. (b) Measured |S21|2 curves of O band PDs.
Fig. 7
Fig. 7 Schematic layout of the characterization setup for the transceiver operating with upstream and downstream signal simultaneously applied. DSA: digital serial analyzer; HS PD: high-speed photodetector; VOA: variable optical attenuator; PM: power monitor; MOD: modulator; TP PD: transfer printed photodetector; WDM: wavelength division multiplexer; EDFA: erbium doped fiber amplifier; BPF: band pass filter; PPG: pulse pattern generator; PC: polarization controller.
Fig. 8
Fig. 8 Overlaid 10 Gbit/s eye diagrams of the upstream (O-band) data signal and downstream (C-band) data signal.
Fig. 9
Fig. 9 Received 10 Gbit/s NRZ-PRBS upstream signal at (a) 1270 nm, (b) 1310 nm and (c) 1350 nm. The vertical scale is identical in all plots
Fig. 10
Fig. 10 Measured BER versus received optical power for (a) the upstream data signal, (b) the downstream data signal.
Fig. 11
Fig. 11 Measured bit error rate of the upstream data signal at 10 Gbit/s with the downstream link operational or off.

Tables (1)

Tables Icon

Table 1 III-V layer stack for the O-band PD.

Metrics