Abstract

Nonlinear photoluminescence imaging is used to visualize the intensity distribution of femtosecond laser pulses inside the optical fiber during Bragg grating inscription based on side illumination through a phase mask. This technique, which results in direct imaging of the inscription laser field inside the optical fiber, facilitates i) the characterization of the laser focus in the vicinity of the fiber core and ii) the optimization of the fiber alignment with respect to the laser focus while using pulses with energies several times lower than those used during the actual inscription process. The applicability of this imaging technique is demonstrated for Bragg grating inscription in different optical fibers, including direct inscription through the fiber coating.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications

Cyril Hnatovsky, Dan Grobnic, and Stephen J. Mihailov
Opt. Express 25(21) 25435-25446 (2017)

High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask

Cyril Hnatovsky, Dan Grobnic, and Stephen J. Mihailov
Opt. Express 26(18) 23550-23564 (2018)

Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens

Aviran Halstuch, Avishay Shamir, and Amiel A. Ishaaya
Opt. Express 27(12) 16935-16944 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  2. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [Crossref] [PubMed]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  5. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
    [Crossref]
  6. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
    [Crossref] [PubMed]
  7. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
    [Crossref]
  8. K.-i. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, “Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,” Appl. Phys. Lett. 79(9), 1228–1230 (2001).
    [Crossref]
  9. R. Kashyap, Fiber Bragg Gratings (Academic, 2009), Chap. 3.
  10. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  11. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
    [Crossref]
  12. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
    [Crossref]
  13. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
    [Crossref]
  14. J. Qiu, L. Wang, and B. Zhu, “Femtosecond laser induced various luminescent phenomena in solid materials,” in Progress in Ultrafast Intense Laser Science, Volume 91, K. Yamanouchi, A. Becker, R. Li, and S. L. Chin, ed. (Springer, 2009).
  15. D. Grobnic, C. Hnatovsky, R. Lausten, and S. J. Mihailov, “Dynamics of the fluorescence intensity during fiber Bragg grating inscription in SMF-28 and pure silica core fiber using 800 nm fs radiation,” in Photonics and Fiber Technology 2016 (2016), paper BTh3B.7.
  16. Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in Ge-doped fiber,” Appl. Phys. Lett. 61(25), 2955–2957 (1992).
    [Crossref]
  17. L. Paccou, M. Lancry, and M. Douay, “Kinetics of UV-induced blue luminescence linked with the observation of the local mean index in fiber Bragg gratings,” Opt. Express 13(19), 7342–7349 (2005).
    [Crossref] [PubMed]
  18. T. Komukai and N. Nakazawa, “Fabrication of high quality long fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO defects,” IEEE Photonics Technol. Lett. 8(11), 1495–1497 (1996).
    [Crossref]
  19. C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Optimization of the Bragg Grating Inscription Process Using Fluorescence Microscopy,” in Photonics and Fiber Technology 2016 (2016), paper BW4B.5.
  20. C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
    [Crossref] [PubMed]
  21. T. D. Monte, L. Wang, and R. Dyott, “Elliptical core and D-shape fibers,” in Specialty Optical Fibers Handbook, A. Méndez and T. F. Morse, ed. (Academic, 2007).
  22. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber bragg gratings,” Appl. Opt. 39(33), 6128–6135 (2000).
    [Crossref] [PubMed]
  23. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
    [Crossref] [PubMed]
  24. M.-S. Kim, T. Scharf, C. Menzel, C. Rockstuhl, and H. P. Herzig, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express 20(5), 4903–4920 (2012).
    [Crossref] [PubMed]
  25. C. Bourgenot, C. D. Saunter, J. M. Taylor, J. M. Girkin, and G. D. Love, “3D adaptive optics in a light sheet microscope,” Opt. Express 20(12), 13252–13261 (2012).
    [Crossref] [PubMed]
  26. T. Meinert, B. A. Gutwein, and A. Rohrbach, “Light-sheet microscopy in a glass capillary: feedback holographic control for illumination beam correction,” Opt. Lett. 42(2), 350–353 (2017).
    [Crossref] [PubMed]
  27. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
    [Crossref]
  28. P. Török, P. Varga, Z. Laczic, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
    [Crossref]
  29. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field,” J. Opt. Soc. Am. A 12(10), 2136–2144 (1995).
    [Crossref]
  30. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [Crossref] [PubMed]
  31. M. Gallagher and U. Osterberg, “Time resolved 3.10 eV luminescence in germanium-doped silica glass,” Appl. Phys. Lett. 63(22), 2987–2989 (1993).
    [Crossref]
  32. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
    [Crossref]
  33. D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
    [Crossref]
  34. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
    [Crossref]
  35. D. Grobnic, S. J. Mihailov, R. Lausten, and C. Hnatovsky, “High Temperature Stable Fiber Bragg Gratings (FBGs) Inscribed Through Polyimide Coating of Optical Fibers Using a Phase Mask,” in Photonics and Fiber Technology 2016 (2016), paper BM3B.2.
  36. M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
    [Crossref] [PubMed]
  37. C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber”, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2010), paper BThD3.
  38. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
    [Crossref]
  39. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
    [Crossref]

2017 (2)

2014 (1)

2012 (3)

2011 (1)

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (4)

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

2006 (1)

2005 (2)

2004 (4)

2003 (2)

2001 (1)

K.-i. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, “Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,” Appl. Phys. Lett. 79(9), 1228–1230 (2001).
[Crossref]

2000 (1)

1999 (2)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

1996 (2)

T. Komukai and N. Nakazawa, “Fabrication of high quality long fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO defects,” IEEE Photonics Technol. Lett. 8(11), 1495–1497 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

1995 (2)

1993 (2)

M. Gallagher and U. Osterberg, “Time resolved 3.10 eV luminescence in germanium-doped silica glass,” Appl. Phys. Lett. 63(22), 2987–2989 (1993).
[Crossref]

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

1992 (1)

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in Ge-doped fiber,” Appl. Phys. Lett. 61(25), 2955–2957 (1992).
[Crossref]

Barnes, M.

Bennion, I.

Bernier, M.

Blott, B. H.

Booker, G. R.

Bourgenot, C.

Brocklesby, W. S.

Carrier, J.

Clausnitzer, T.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

Coulas, D.

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Dai, X.

Davis, K. M.

Demos, S. G.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

Ding, H.

Douay, M.

Duval, Y.

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in Ge-doped fiber,” Appl. Phys. Lett. 61(25), 2955–2957 (1992).
[Crossref]

Fleming, S.

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in Ge-doped fiber,” Appl. Phys. Lett. 61(25), 2955–2957 (1992).
[Crossref]

Fuchs, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

Gallagher, M.

M. Gallagher and U. Osterberg, “Time resolved 3.10 eV luminescence in germanium-doped silica glass,” Appl. Phys. Lett. 63(22), 2987–2989 (1993).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Girkin, J. M.

Grobnic, D.

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

Gutwein, B. A.

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Henderson, G.

Herzig, H. P.

Hillman, C. W. J.

Hirano, M.

K.-i. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, “Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,” Appl. Phys. Lett. 79(9), 1228–1230 (2001).
[Crossref]

Hirao, K.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Hnatovsky, C.

Hosono, H.

K.-i. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, “Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,” Appl. Phys. Lett. 79(9), 1228–1230 (2001).
[Crossref]

Inouye, H.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

Ito, N.

K.-i. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, “Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,” Appl. Phys. Lett. 79(9), 1228–1230 (2001).
[Crossref]

Juodkazis, S.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Kashyap, R.

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in Ge-doped fiber,” Appl. Phys. Lett. 61(25), 2955–2957 (1992).
[Crossref]

Kawamura, K.-i.

K.-i. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, “Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,” Appl. Phys. Lett. 79(9), 1228–1230 (2001).
[Crossref]

Kazansky, P. G.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

Khrushchev, I. Y.

Kim, M.-S.

Komukai, T.

T. Komukai and N. Nakazawa, “Fabrication of high quality long fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO defects,” IEEE Photonics Technol. Lett. 8(11), 1495–1497 (1996).
[Crossref]

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

Laczic, Z.

Lancry, M.

Love, G. D.

Lu, P.

Martinez, A.

Matsuo, S.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Meinert, T.

Menzel, C.

Mihailov, S.

Mihailov, S. J.

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

Mills, J. D.

Misawa, H.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Mitsuyu, T.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

Miura, K.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Nakazawa, N.

T. Komukai and N. Nakazawa, “Fabrication of high quality long fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO defects,” IEEE Photonics Technol. Lett. 8(11), 1495–1497 (1996).
[Crossref]

Nolte, S.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

Osterberg, U.

M. Gallagher and U. Osterberg, “Time resolved 3.10 eV luminescence in germanium-doped silica glass,” Appl. Phys. Lett. 63(22), 2987–2989 (1993).
[Crossref]

Ouellette, F.

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in Ge-doped fiber,” Appl. Phys. Lett. 61(25), 2955–2957 (1992).
[Crossref]

Paccou, L.

Qiu, J.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Rockstuhl, C.

Rohrbach, A.

Sarukura, N.

K.-i. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, “Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,” Appl. Phys. Lett. 79(9), 1228–1230 (2001).
[Crossref]

Saunter, C. D.

Scharf, T.

Smelser, C.

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

Starrost, F.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Sugimoto, N.

Sun, H.-B.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Taylor, J. M.

Thomas, J.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

Török, P.

Trépanier, F.

Tünnermann, A.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

Unruh, J.

Vallée, R.

Varga, P.

Walker, R. B.

Watanabe, M.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Wikszak, E.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

Zeitner, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[Crossref]

K.-i. Kawamura, N. Sarukura, M. Hirano, N. Ito, and H. Hosono, “Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,” Appl. Phys. Lett. 79(9), 1228–1230 (2001).
[Crossref]

Y. Duval, R. Kashyap, S. Fleming, and F. Ouellette, “Correlation between ultraviolet-induced refractive index change and photoluminescence in Ge-doped fiber,” Appl. Phys. Lett. 61(25), 2955–2957 (1992).
[Crossref]

M. Gallagher and U. Osterberg, “Time resolved 3.10 eV luminescence in germanium-doped silica glass,” Appl. Phys. Lett. 63(22), 2987–2989 (1993).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2007).
[Crossref]

Electron. Lett. (2)

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

T. Komukai and N. Nakazawa, “Fabrication of high quality long fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO defects,” IEEE Photonics Technol. Lett. 8(11), 1495–1497 (1996).
[Crossref]

J. Lightwave Technol. (2)

J. Microsc. (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
[Crossref] [PubMed]

T. Meinert, B. A. Gutwein, and A. Rohrbach, “Light-sheet microscopy in a glass capillary: feedback holographic control for illumination beam correction,” Opt. Lett. 42(2), 350–353 (2017).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60(14), 9959–9964 (1999).
[Crossref]

Phys. Rev. Lett. (1)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199 (1999).
[Crossref]

Sensors (Basel) (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Other (7)

R. Kashyap, Fiber Bragg Gratings (Academic, 2009), Chap. 3.

J. Qiu, L. Wang, and B. Zhu, “Femtosecond laser induced various luminescent phenomena in solid materials,” in Progress in Ultrafast Intense Laser Science, Volume 91, K. Yamanouchi, A. Becker, R. Li, and S. L. Chin, ed. (Springer, 2009).

D. Grobnic, C. Hnatovsky, R. Lausten, and S. J. Mihailov, “Dynamics of the fluorescence intensity during fiber Bragg grating inscription in SMF-28 and pure silica core fiber using 800 nm fs radiation,” in Photonics and Fiber Technology 2016 (2016), paper BTh3B.7.

T. D. Monte, L. Wang, and R. Dyott, “Elliptical core and D-shape fibers,” in Specialty Optical Fibers Handbook, A. Méndez and T. F. Morse, ed. (Academic, 2007).

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Optimization of the Bragg Grating Inscription Process Using Fluorescence Microscopy,” in Photonics and Fiber Technology 2016 (2016), paper BW4B.5.

D. Grobnic, S. J. Mihailov, R. Lausten, and C. Hnatovsky, “High Temperature Stable Fiber Bragg Gratings (FBGs) Inscribed Through Polyimide Coating of Optical Fibers Using a Phase Mask,” in Photonics and Fiber Technology 2016 (2016), paper BM3B.2.

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel Phase Mask Apparatus for “Through the Jacket” Inscription of FBGs in Unloaded SMF-28 Fiber”, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2010), paper BThD3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic of the microscopy setup used to measure the light intensity distribution in the core region of optical fibers. The bright-field microscopy images of the cleaved D-fiber and SMF-28 fiber are shown at the bottom. The distance between the mask M and the core of the optical fiber OF is denoted by d.
Fig. 2
Fig. 2 Light intensity distributions in optical fiber and free space produced by focusing a femtosecond laser beam through a phase mask with the f = 8 mm AL. (a) focal intensity distribution inside the D-fiber. (b) focal intensity distribution in free space recorded after removing the D-fiber from the optical path. The scale along the x- and y-axis is the same, whereas the scale along the z-axis is smaller, as indicated with the corresponding scale bars. The beam propagation direction in the yz-planes is denoted by arrows. The distance between the mask and the core of the optical fiber is d = 450 μm.
Fig. 3
Fig. 3 A schematic of the microscopy setup to monitor nonlinear photoluminescence in the Ge-doped core of the D-fiber.
Fig. 4
Fig. 4 Aligning the femtosecond laser focus with the fiber core using nonlinear microscopy. (a) Alignment procedure for the 3rd order mask (see text). The center of the core corresponding to the brightest photoluminescence is at the 5th row. (b) Nonlinear microscopy image of the laser focus after the 1st order mask when the focus is in the middle of the core.
Fig. 5
Fig. 5 A schematic of the nonlinear microscopy/dark-field microscopy setup used to adjust the FBG inscription process.
Fig. 6
Fig. 6 Correlation between nonlinear microscopy of the SMF-28 fiber core performed at the alignment stage and dark-field microscopy of the same region after the FBG inscription has been completed. (a) At d = 100 μm, a clear multiple-beam interference pattern from the 3.17 μm pitched phase mask (i.e., the 3rd order mask) is observed. The top and bottom panels represent different positions of the fiber along the z-axis in the Talbot interference pattern. (b) At d = 1000 μm after the 3rd order mask, order walk-off results in a two-beam interference pattern. The nonlinear photo-luminescence microscopy images at λ1 ~400 nm are in blue; the corresponding dark-field microscopy images at λ2 ~637 nm are in red; the free-space intensity distributions at λ = 800 nm presented in the left panels are in pink. Due to astigmatism generated by the fiber, the scaling in the nonlinear photoluminescence and dark-field microscopy images applies only to the x-axis.
Fig. 7
Fig. 7 a) Femtosecond laser focus alignment through an acrylate-coated SMF-28 fiber as facilitated by nonlinear and dark-field microscopy. The fiber core is imaged by Rayleigh scattering of coupled λ2 = 637 nm light. The left-hand image shows blue photoluminescence in front of the core, the middle image the increased photoluminescence as the line focus overlaps the core, and the right-hand image the photoluminescence of the laser line focus beyond the core. (b) The transmission spectrum of a transjacket FBG written with the photoluminescence line focus aligned on the core (middle image Fig. 7(a)).
Fig. 8
Fig. 8 Femtosecond laser focus alignment through a polyimide-coated SMF-28 fiber as facilitated by nonlinear and dark-field microscopy. (a) The image shows the blue photoluminescence as the line focus overlaps the core. (b) The transmission spectrum of a transjacket FBG written with the photoluminescence line focus aligned on the core.

Metrics