Abstract

A surface plasmon resonance (SPR) sensor with two open-ring channels based on a photonic crystal fiber (PCF) is described. The sensor is designed to detect low refractive indexes between 1.23 and 1.29 with the operation wavelength in mid-infrared region between 2550 nm and 2900 nm. The coupling characteristics and sensing properties are numerically analyzed by the finite element method. The average spectral sensitivity is 5500 nm/RIU and a maximum resolution of 7.69 × 10−6 RIU can be obtained. Our analysis shows that the PCF-SPR sensor is suitable for mid-infrared detection.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  2. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24(3), 2485–2495 (2016).
    [Crossref] [PubMed]
  3. L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
    [Crossref] [PubMed]
  4. X. Li, Y. Wang, J. Luo, and S. Ai, “Sensitive detection of adenosine triphosphate by exonuclease III-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore,” Sens. Actuators B Chem. 228, 509–514 (2016).
    [Crossref]
  5. C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
    [Crossref]
  6. G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
    [Crossref] [PubMed]
  7. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
    [Crossref]
  8. J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
    [Crossref]
  9. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  10. J. Hsu, S. Jeng, and Y. Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Opt. Commun. 341, 210–217 (2015).
    [Crossref]
  11. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [Crossref] [PubMed]
  12. A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of bio-layer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
    [Crossref]
  13. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
    [Crossref] [PubMed]
  14. X. Xin, S. Li, T. Cheng, W. Qin, and J. Xue, “Numerical simulation of surface plasmon resonance based on Au-metalized nanowires in the liquid-core photonic crystal fibers,” Optik (Stuttg.) 126(15-16), 1457–1461 (2015).
    [Crossref]
  15. D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313(4), 94–98 (2013).
  16. G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
    [Crossref]
  17. G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
    [Crossref]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  19. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some, optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [Crossref]
  20. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured optical fiber based surface Plasmon resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
    [Crossref]
  21. J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
    [Crossref] [PubMed]
  22. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  23. R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
    [Crossref]
  24. X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

2017 (2)

C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

2016 (4)

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express 24(3), 2485–2495 (2016).
[Crossref] [PubMed]

X. Li, Y. Wang, J. Luo, and S. Ai, “Sensitive detection of adenosine triphosphate by exonuclease III-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore,” Sens. Actuators B Chem. 228, 509–514 (2016).
[Crossref]

2015 (3)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

J. Hsu, S. Jeng, and Y. Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Opt. Commun. 341, 210–217 (2015).
[Crossref]

X. Xin, S. Li, T. Cheng, W. Qin, and J. Xue, “Numerical simulation of surface plasmon resonance based on Au-metalized nanowires in the liquid-core photonic crystal fibers,” Optik (Stuttg.) 126(15-16), 1457–1461 (2015).
[Crossref]

2014 (3)

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
[Crossref]

2013 (2)

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
[Crossref] [PubMed]

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313(4), 94–98 (2013).

2012 (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

2010 (1)

2009 (2)

A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of bio-layer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
[Crossref]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

2008 (1)

2007 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1994 (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some, optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

AbdelMalek, F.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
[Crossref]

Ademgil, H.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
[Crossref]

Adikan, F. R. M.

Aggoun, A.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
[Crossref]

Ahmed, R.

Ai, S.

X. Li, Y. Wang, J. Luo, and S. Ai, “Sensitive detection of adenosine triphosphate by exonuclease III-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore,” Sens. Actuators B Chem. 228, 509–514 (2016).
[Crossref]

Akowuah, E. K.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

An, G.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

Baba, A.

C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
[Crossref]

Bergese, P.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Bugatti, A.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Caimi, L.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Carrascosa, L. G.

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Chen, C.

Chen, H.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

Cheng, T.

X. Xin, S. Li, T. Cheng, W. Qin, and J. Xue, “Numerical simulation of surface plasmon resonance based on Au-metalized nanowires in the liquid-core photonic crystal fibers,” Optik (Stuttg.) 126(15-16), 1457–1461 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dakka, M. A.

Dash, J. N.

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

Di Noto, G.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Ekgasit, S.

C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
[Crossref]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some, optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Gao, D.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313(4), 94–98 (2013).

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some, optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Guan, C.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313(4), 94–98 (2013).

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Han, Z.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Hao, X.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Hassani, A.

Hautakorpi, M.

Haxha, S.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Hsu, J.

J. Hsu, S. Jeng, and Y. Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Opt. Commun. 341, 210–217 (2015).
[Crossref]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some, optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Jeng, S.

J. Hsu, S. Jeng, and Y. Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Opt. Commun. 341, 210–217 (2015).
[Crossref]

Jha, R.

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaneko, F.

C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
[Crossref]

Kato, K.

C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Lertvachirapaiboon, C.

C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
[Crossref]

Leviatan, Y.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

Li, C. M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

Li, S.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

X. Xin, S. Li, T. Cheng, W. Qin, and J. Xue, “Numerical simulation of surface plasmon resonance based on Au-metalized nanowires in the liquid-core photonic crystal fibers,” Optik (Stuttg.) 126(15-16), 1457–1461 (2015).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
[Crossref] [PubMed]

Li, X.

X. Li, Y. Wang, J. Luo, and S. Ai, “Sensitive detection of adenosine triphosphate by exonuclease III-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore,” Sens. Actuators B Chem. 228, 509–514 (2016).
[Crossref]

Ludvigsen, H.

Luo, J.

X. Li, Y. Wang, J. Luo, and S. Ai, “Sensitive detection of adenosine triphosphate by exonuclease III-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore,” Sens. Actuators B Chem. 228, 509–514 (2016).
[Crossref]

Mahdiraji, G. A.

Mattinen, M.

Mazzoldi, E. L.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Montanelli, A.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Otte, M. A.

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

Otupiri, R.

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
[Crossref]

Palanisamy, R.

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

Pan, S. S.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

Qin, W.

X. Xin, S. Li, T. Cheng, W. Qin, and J. Xue, “Numerical simulation of surface plasmon resonance based on Au-metalized nanowires in the liquid-core photonic crystal fibers,” Optik (Stuttg.) 126(15-16), 1457–1461 (2015).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
[Crossref] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Rauf, S.

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

Ricotta, D.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Rifat, A. A.

Rusnati, M.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Sepulveda, B.

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

Shao, Y.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Shee, Y. G.

Shevchenko, Y.

Shiddiky, M. J. A.

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

Shinbo, K.

C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
[Crossref]

Shum, P.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

Sina, A. A. I.

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

Skorobogatiy, M.

Sua, Y. M.

Sun, Y.

J. Hsu, S. Jeng, and Y. Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Opt. Commun. 341, 210–217 (2015).
[Crossref]

Trau, M.

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

Wang, G.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

Wang, H.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Wang, X.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

Wang, Y.

X. Li, Y. Wang, J. Luo, and S. Ai, “Sensitive detection of adenosine triphosphate by exonuclease III-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore,” Sens. Actuators B Chem. 228, 509–514 (2016).
[Crossref]

Wen, Y.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313(4), 94–98 (2013).

Xiao, Y.

Xin, X.

X. Xin, S. Li, T. Cheng, W. Qin, and J. Xue, “Numerical simulation of surface plasmon resonance based on Au-metalized nanowires in the liquid-core photonic crystal fibers,” Optik (Stuttg.) 126(15-16), 1457–1461 (2015).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
[Crossref] [PubMed]

Xue, J.

X. Xin, S. Li, T. Cheng, W. Qin, and J. Xue, “Numerical simulation of surface plasmon resonance based on Au-metalized nanowires in the liquid-core photonic crystal fibers,” Optik (Stuttg.) 126(15-16), 1457–1461 (2015).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
[Crossref] [PubMed]

Yan, M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

Yan, X.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yu, X.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

Yuan, L.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313(4), 94–98 (2013).

Yuan, Z.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Zendrini, A.

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Zhang, W.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

Zhang, X.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Zhang, Y.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

Zhao, Y.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

Zhong, X.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313(4), 94–98 (2013).

Zhu, X.

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

G. Di Noto, A. Bugatti, A. Zendrini, E. L. Mazzoldi, A. Montanelli, L. Caimi, M. Rusnati, D. Ricotta, and P. Bergese, “Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes,” Biosens. Bioelectron. 77, 518–524 (2016).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

L. G. Carrascosa, A. A. I. Sina, R. Palanisamy, B. Sepulveda, M. A. Otte, S. Rauf, M. J. A. Shiddiky, and M. Trau, “Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,” Chem. Commun. (Camb.) 50(27), 3585–3588 (2014).
[Crossref] [PubMed]

IEEE Photonics J. (1)

R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J. 6(4), 6801711 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

J. Lightwave Technol. (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some, optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

J. Opt. (1)

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 74–77 (2009).

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Opt. Commun. (2)

J. Hsu, S. Jeng, and Y. Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Opt. Commun. 341, 210–217 (2015).
[Crossref]

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313(4), 94–98 (2013).

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48(1), 46 (2016).
[Crossref]

Optik (Stuttg.) (1)

X. Xin, S. Li, T. Cheng, W. Qin, and J. Xue, “Numerical simulation of surface plasmon resonance based on Au-metalized nanowires in the liquid-core photonic crystal fibers,” Optik (Stuttg.) 126(15-16), 1457–1461 (2015).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Plasmonics (1)

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Han, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12(2), 465–471 (2017).
[Crossref]

Sens. Actuators B Chem. (3)

X. Li, Y. Wang, J. Luo, and S. Ai, “Sensitive detection of adenosine triphosphate by exonuclease III-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore,” Sens. Actuators B Chem. 228, 509–514 (2016).
[Crossref]

C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, “Transmission surface plasmon resonance imaging of silver nanoprisms enhanced propagating surface plasmon resonance on a metallic grating structure,” Sens. Actuators B Chem. 249, 39–43 (2017).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross section of the PCF-SPR sensor.

Fig. 2
Fig. 2

(a) Distribution of the refractive index of the sensor; (b) Optical field distribution (core-guided mode), (c) Optical field distribution (plasmonic mode), (d) optical field distribution (the plasmonic mode and core-guided mode at resonance wavelength), where the arrows indicate the electric field direction. (ra = 1 μm, rb = 0.8 μm, rc = 8 μm, tg = 50 nm, Λ = 3.5 μm, rd = 1.2 μm, and ns = 1.26)

Fig. 3
Fig. 3

Dependence of the loss spectra of the fundamental mode on the gold layer thickness (ra = 1 μm, rb = 0.8 μm, rc = 8 μm, Λ = 3.5 μm, rd = 1.2 μm, and ns = 1.26)

Fig. 4
Fig. 4

Loss spectra of the fundamental mode for different radii of the outer layer air holes (rb = 0.8 μm, rc = 8 μm, rd = 1.2 μm, Λ = 3.5 μm, tg = 50 nm, and ns = 1.26)

Fig. 5
Fig. 5

Loss spectra of the fundamental mode for different distances between inner layer air holes (ra = 1 μm, rb = 0.8 μm, rc = 8 μm, rd = 1.2 μm, tg = 50 nm, and ns = 1.26)

Fig. 6
Fig. 6

Loss spectra of the fundamental mode for different size of the open slots (ra = 1 μm, rb = 0.8 μm, rc = 8 μm, Λ = 3.5 μm, tg = 50 nm, and ns = 1.26)

Fig. 7
Fig. 7

Loss spectra of the fundamental mode for different refractive indexes of the analyte (ra = 1 μm, rb = 0.8 μm, rc = 8 μm, rd = 1.2 μm, tg = 50 nm, and Λ = 3.5 μm)

Fig. 8
Fig. 8

Amplitude sensitivity of the sensor for different refractive indexes of the analyte (ra = 1 μm, rb = 0.8 μm, rc = 8 μm, rd = 1.2 μm, tg = 50 nm, and Λ = 3.5 μm)

Fig. 9
Fig. 9

The dependences of amplitude sensitivity of the sensor on gold thickness (ra = 1 μm, rb = 0.8 μm, rc = 8 μm, rd = 1.2 μm, ns = 1.26, and Λ = 3.5 μm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε( ω )= ε 1 +i ε 2 = ε ω p 2 ω( ω+i ω c )
n 2 1= 0.6961663 λ 2 λ 2 ( 0.0684043 ) 2 + 0.4079426 λ 2 λ 2 ( 0.1162414 ) 2 + 0.897479 λ 2 λ 2 ( 9.896161 ) 2
α loss =8.686× 2π λ Im( n eff )× 10 4 ( dB / cm )
Re{ K sp }={ ω c ε m ( λ ) n 2 ε m ( λ )+ n 2 }
S( λ )= Δ λ peak Δ n a ( nm / RIU )
R= Δ n a Δ λ min / Δ λ peak
S( λ )= 1 α( λ, n a ) α( λ, n a ) n a ( RI U 1 )

Metrics