Abstract

A time-resolved holographic polarization microscopy, based on angular multiplexing holographic technique, is proposed for imaging ultrafast phenomena in polarization-sensitive transparent materials. This method can retrieve and image the complex amplitude distributions of two orthogonal polarization components of two sequential vector wavefronts with ultrashort time interval by a single short recording. Some experimental results for imaging the pulse laser induced ultrafast events based on the method are given. It is demonstrated that this technique may provide a potential tool for characterizing ultrafast processes in polarization-sensitive materials, especially in the non-reproducible experiment conditions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot ultrafast optical imaging

Jinyang Liang and Lihong V. Wang
Optica 5(9) 1113-1127 (2018)

Ultrafast holographic Stokesmeter for polarization imaging in real time

M. S. Shahriar, J. T. Shen, Renu Tripathi, Mark Kleinschmit, Tsu-Wei Nee, and Soe-Mie F. Nee
Opt. Lett. 29(3) 298-300 (2004)

Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events

Yu-Chih Lin, Chau-Jern Cheng, and Li-Chien Lin
Opt. Lett. 42(11) 2082-2085 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  3. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
    [Crossref]
  4. Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
    [Crossref] [PubMed]
  5. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
    [Crossref]
  6. Y. Ren, Y. Jiao, J. R. Vázquez de Aldana, and F. Chen, “Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties,” Opt. Mater. 58, 61–66 (2016).
    [Crossref]
  7. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [Crossref] [PubMed]
  8. Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
    [Crossref]
  9. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
    [Crossref] [PubMed]
  10. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
    [Crossref]
  11. E. Tokunaga, A. Terasaki, and T. Kobayashi, “Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy,” Opt. Lett. 17(16), 1131–1133 (1992).
    [Crossref] [PubMed]
  12. J. P. Geindre, P. Audebert, A. Rousse, F. Falliès, J. C. Gauthier, A. Mysyrowicz, A. D. Santos, G. Hamoniaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19(23), 1997–1999 (1994).
    [Crossref] [PubMed]
  13. L. Gallais and S. Monneret, “Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor,” Opt. Lett. 41(14), 3245–3248 (2016).
    [Crossref] [PubMed]
  14. D.-B. L. Douti, M. Chrayteh, S. Aknoun, T. Doualle, C. Hecquet, S. Monneret, and L. Gallais, “Quantitative phase imaging applied to laser damage detection and analysis,” Appl. Opt. 54(28), 8375–8382 (2015).
    [Crossref] [PubMed]
  15. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys., A Mater. Sci. Process. 78(4), 483–489 (2004).
    [Crossref]
  16. M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004).
    [Crossref] [PubMed]
  17. D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93(4), 041120 (2008).
    [Crossref]
  18. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008).
    [Crossref] [PubMed]
  19. A. Urniežius, N. Šiaulys, V. Kudriašov, V. Sirutkaitis, and A. Melninkaitis, “Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 108(2), 343–349 (2012).
    [Crossref]
  20. X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31(11), 1636–1638 (2006).
    [Crossref] [PubMed]
  21. J. Wang, J. L. Zhao, J. L. Di, A. Rauf, W. Z. Yang, and X. L. Wang, “Visual measurement of the pulse laser ablation process on liquid surface by using digital holography,” J. Appl. Phys. 115(17), 173106 (2014).
    [Crossref]
  22. N. Šiaulys, L. Gallais, and A. Melninkaitis, “Direct holographic imaging of ultrafast laser damage process in thin films,” Opt. Lett. 39(7), 2164–2167 (2014).
    [Crossref] [PubMed]
  23. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
    [Crossref] [PubMed]
  24. T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
    [Crossref] [PubMed]
  25. R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
    [Crossref] [PubMed]
  26. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
    [Crossref] [PubMed]
  27. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
    [Crossref]
  28. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
    [Crossref] [PubMed]
  29. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006).
    [Crossref] [PubMed]
  30. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  31. E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
    [Crossref] [PubMed]
  32. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
    [Crossref]
  33. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
    [Crossref] [PubMed]
  34. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
    [Crossref] [PubMed]

2016 (4)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Y. Ren, Y. Jiao, J. R. Vázquez de Aldana, and F. Chen, “Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties,” Opt. Mater. 58, 61–66 (2016).
[Crossref]

L. Gallais and S. Monneret, “Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor,” Opt. Lett. 41(14), 3245–3248 (2016).
[Crossref] [PubMed]

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

2015 (2)

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

D.-B. L. Douti, M. Chrayteh, S. Aknoun, T. Doualle, C. Hecquet, S. Monneret, and L. Gallais, “Quantitative phase imaging applied to laser damage detection and analysis,” Appl. Opt. 54(28), 8375–8382 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

2012 (1)

A. Urniežius, N. Šiaulys, V. Kudriašov, V. Sirutkaitis, and A. Melninkaitis, “Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 108(2), 343–349 (2012).
[Crossref]

2011 (2)

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
[Crossref] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93(4), 041120 (2008).
[Crossref]

T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008).
[Crossref] [PubMed]

2007 (3)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
[Crossref] [PubMed]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

2006 (2)

2005 (1)

2004 (2)

M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004).
[Crossref] [PubMed]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys., A Mater. Sci. Process. 78(4), 483–489 (2004).
[Crossref]

2002 (1)

2001 (2)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

2000 (1)

1998 (1)

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

1994 (1)

1992 (1)

Aknoun, S.

Antonetti, A.

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Audebert, P.

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Bado, P.

Balciunas, T.

Beghuin, D.

Bellouard, Y.

Bon, P.

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Boukenter, A.

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Brelet, Y.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Bulgakova, N. M.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Burakov, I. M.

Centurion, M.

Chen, F.

Y. Ren, Y. Jiao, J. R. Vázquez de Aldana, and F. Chen, “Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties,” Opt. Mater. 58, 61–66 (2016).
[Crossref]

Cheng, G.

Choi, Y.

Chrayteh, M.

Colomb, T.

Couairon, A.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Cuche, E.

Dahlgren, P.

Depeursinge, C.

Di, J. L.

J. Wang, J. L. Zhao, J. L. Di, A. Rauf, W. Z. Yang, and X. L. Wang, “Visual measurement of the pulse laser ablation process on liquid surface by using digital holography,” J. Appl. Phys. 115(17), 173106 (2014).
[Crossref]

Doblas, A.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

Doualle, T.

Douti, D.-B. L.

Dugan, M.

Dürr, F.

Falliès, F.

Forestier, B.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

Gallais, L.

Garcia-Sucerquia, J.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gauthier, J. C.

Geindre, J. P.

Hamoniaux, G.

Hänsch, T. W.

He, Z.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Hecquet, C.

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Hirao, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
[Crossref] [PubMed]

Houard, A.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Huo, G.

Jiao, Y.

Y. Ren, Y. Jiao, J. R. Vázquez de Aldana, and F. Chen, “Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties,” Opt. Mater. 58, 61–66 (2016).
[Crossref]

Kang, Y. G.

Kawata, S.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Kazansky, P. G.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Kim, B.-M.

Kobayashi, T.

Kudriašov, V.

A. Urniežius, N. Šiaulys, V. Kudriašov, V. Sirutkaitis, and A. Melninkaitis, “Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 108(2), 343–349 (2012).
[Crossref]

Lee, K. J.

Limberger, H. G.

Liu, Y.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Liu, Z.

Marquet, P.

Martínez-Corral, M.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

Maucort, G.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Melninkaitis, A.

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Meshcheryakov, Y. P.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Mishchik, K.

Mitryukovskiy, S.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Miura, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
[Crossref] [PubMed]

Monneret, S.

Mu, G.

Mysyrowicz, A.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

J. P. Geindre, P. Audebert, A. Rousse, F. Falliès, J. C. Gauthier, A. Mysyrowicz, A. D. Santos, G. Hamoniaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19(23), 1997–1999 (1994).
[Crossref] [PubMed]

Oldenbourg, R.

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

Ouerdane, Y.

Papazoglou, D. G.

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93(4), 041120 (2008).
[Crossref]

Park, K.

Parriaux, O.

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

Psaltis, D.

Pu, Y.

Qiu, J.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Rauf, A.

J. Wang, J. L. Zhao, J. L. Di, A. Rauf, W. Z. Yang, and X. L. Wang, “Visual measurement of the pulse laser ablation process on liquid surface by using digital holography,” J. Appl. Phys. 115(17), 173106 (2014).
[Crossref]

Ren, Y.

Y. Ren, Y. Jiao, J. R. Vázquez de Aldana, and F. Chen, “Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties,” Opt. Mater. 58, 61–66 (2016).
[Crossref]

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Rousse, A.

Saavedra, G.

Said, A. A.

Sakakura, M.

Salathé, R.-P.

Salmon, E. D.

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

Sánchez-Ortiga, E.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

Santos, A. D.

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Shimotsuma, Y.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
[Crossref] [PubMed]

Šiaulys, N.

N. Šiaulys, L. Gallais, and A. Melninkaitis, “Direct holographic imaging of ultrafast laser damage process in thin films,” Opt. Lett. 39(7), 2164–2167 (2014).
[Crossref] [PubMed]

A. Urniežius, N. Šiaulys, V. Kudriašov, V. Sirutkaitis, and A. Melninkaitis, “Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 108(2), 343–349 (2012).
[Crossref]

Sirutkaitis, V.

A. Urniežius, N. Šiaulys, V. Kudriašov, V. Sirutkaitis, and A. Melninkaitis, “Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 108(2), 343–349 (2012).
[Crossref]

T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008).
[Crossref] [PubMed]

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys., A Mater. Sci. Process. 78(4), 483–489 (2004).
[Crossref]

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tamosauskas, G.

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys., A Mater. Sci. Process. 78(4), 483–489 (2004).
[Crossref]

Terasaki, A.

Terazima, M.

Tokunaga, E.

Tran, P. T.

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

Tzortzakis, S.

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93(4), 041120 (2008).
[Crossref]

Urniežius, A.

A. Urniežius, N. Šiaulys, V. Kudriašov, V. Sirutkaitis, and A. Melninkaitis, “Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 108(2), 343–349 (2012).
[Crossref]

Vázquez de Aldana, J. R.

Y. Ren, Y. Jiao, J. R. Vázquez de Aldana, and F. Chen, “Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties,” Opt. Mater. 58, 61–66 (2016).
[Crossref]

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys., A Mater. Sci. Process. 78(4), 483–489 (2004).
[Crossref]

Wang, J.

J. Wang, J. L. Zhao, J. L. Di, A. Rauf, W. Z. Yang, and X. L. Wang, “Visual measurement of the pulse laser ablation process on liquid surface by using digital holography,” J. Appl. Phys. 115(17), 173106 (2014).
[Crossref]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Wang, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31(11), 1636–1638 (2006).
[Crossref] [PubMed]

Wang, X. L.

J. Wang, J. L. Zhao, J. L. Di, A. Rauf, W. Z. Yang, and X. L. Wang, “Visual measurement of the pulse laser ablation process on liquid surface by using digital holography,” J. Appl. Phys. 115(17), 173106 (2014).
[Crossref]

Wattellier, B.

Wu, Z.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Yang, T. D.

Yang, W.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Yang, W. Z.

J. Wang, J. L. Zhao, J. L. Di, A. Rauf, W. Z. Yang, and X. L. Wang, “Visual measurement of the pulse laser ablation process on liquid surface by using digital holography,” J. Appl. Phys. 115(17), 173106 (2014).
[Crossref]

Yu, L.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Yue, Y.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Zhai, H.

Zhang, N.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Zhao, J. L.

J. Wang, J. L. Zhao, J. L. Di, A. Rauf, W. Z. Yang, and X. L. Wang, “Visual measurement of the pulse laser ablation process on liquid surface by using digital holography,” J. Appl. Phys. 115(17), 173106 (2014).
[Crossref]

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys., A Mater. Sci. Process. 78(4), 483–489 (2004).
[Crossref]

Zhu, X.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

D. G. Papazoglou and S. Tzortzakis, “In-line holography for the characterization of ultrafast laser filamentation in transparent media,” Appl. Phys. Lett. 93(4), 041120 (2008).
[Crossref]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys., A Mater. Sci. Process. 78(4), 483–489 (2004).
[Crossref]

A. Urniežius, N. Šiaulys, V. Kudriašov, V. Sirutkaitis, and A. Melninkaitis, “Application of time-resolved digital holographic microscopy in studies of early femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process. 108(2), 343–349 (2012).
[Crossref]

Biophys. J. (1)

R. Oldenbourg, E. D. Salmon, and P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74(1), 645–654 (1998).
[Crossref] [PubMed]

J. Appl. Phys. (2)

J. Wang, J. L. Zhao, J. L. Di, A. Rauf, W. Z. Yang, and X. L. Wang, “Visual measurement of the pulse laser ablation process on liquid surface by using digital holography,” J. Appl. Phys. 115(17), 173106 (2014).
[Crossref]

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Commun. (2)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3–6), 333–339 (2001).
[Crossref]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Opt. Mater. (1)

Y. Ren, Y. Jiao, J. R. Vázquez de Aldana, and F. Chen, “Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties,” Opt. Mater. 58, 61–66 (2016).
[Crossref]

Phys. Rev. Lett. (2)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110(9), 097601 (2013).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the proposed THPM system. M1–M9, mirrors; QWP, quarter-wave plate; P1-P3, linear polarizers; SHG, KDP crystal; CG1-CG2, 2D orthogonal gratings; PF1-PF3, pinholes filters; BS1–BS4, beam splitters; L1-L5, lenes; MO, microscope objectives; CCD, charge-coupled device.
Fig. 2
Fig. 2 (a) the four-channel angular multiplexing hologram of USAF 1951 resolution test target, (b) the spatial frequency spectrum of Fig. 2(a), (c)-(f) reconstructed amplitude of the test target, (g)-(j) reconstructed phase of the test target.
Fig. 3
Fig. 3 Amplitude and phase contrast images of ultrafast laser-induced damage in sample 2 (a linear polarizer). (a)-(d) the amplitude and the phase contrast associated with the two orthogonal polarization states; (e)-(h) the amplitude and the phase contrast for the delay time of 0.2ns; (i)-(l) the amplitude and the phase contrast for the delay time of 1.8ns. Red dotted line with arrow indicates the propagation direction of the pump pulse in the transverse section.
Fig. 4
Fig. 4 The azimuth and the phase difference images of Sample 2 at different times. (a) the azimuth before pump, (b) the azimuth for the delay time of 0.2ns (c) the azimuth for the delay time of 1.8ns; (d) the phase difference before pump, (e) the phase difference for the delay time of 0.2ns, (f) the phase difference for the delay time of 1.8ns.
Fig. 5
Fig. 5 Amplitude and phase contrast images of ultrafast laser-induced damage in sample 3 (a mica lamina). (a)-(d) the amplitude and the phase contrast associated with the two orthogonal polarization states; (e)-(h) the amplitude and the phase contrast for the delay time of 0.1ns; (i)-(l) the amplitude and the phase contrast for the delay time of 1.7ns.
Fig. 6
Fig. 6 The azimuth and the phase difference images of Sample 3 at different time. (a) the azimuth before pump, (b) the azimuth for the delay time of 0.1ns (c) the azimuth for the delay time of 1.7ns; (d) the phase difference before pump, (e) the phase difference for the delay time of 0.1ns, (f) the phase difference for the delay time of 1.7ns.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I= | ( O t 1 ,x (x,y)+ R t 1, x (x,y) O t 1 ,y (x,y)+ R t 1 ,y (x,y) ) | 2 + | ( O t 2 ,x (x,y)+ R t 2, x (x,y) O t 2 ,y (x,y)+ R t 2 ,y (x,y) ) | 2
R t 1 ,x (x,y)= a 1x ( x,y )exp( j ξ 1 x ) R t 1 ,y (x,y)= a 1y ( x,y )exp( j η 1 y ) R t 2 ,x (x,y)= a 2x ( x,y )exp[ j( ξ 2 x+ η 2 y ) ] R t 2 ,y (x,y)= a 2y ( x,y )exp[ j( ξ 2 x+ η 2 y ) ]
I= Y 0 + Y 1x + Y 1y + Y 2x + Y 2y + Y 1x * + Y 1y * + Y 2x * + Y 2y *
Y 0 = | O t 1 ,x | 2 + | O t 1 ,y | 2 + | O t 2 ,x | 2 + | O t 2 ,y | 2 + | R t 1 ,x | 2 + | R t 1 ,y | 2 + | R t 2 ,x | 2 + | R t 2 ,y | 2
Y 1x = O t 1 ,x R t 1 ,x * Y 1y = O t 1 ,y R t 1 ,y * Y 2x = O t 2 ,x R t 2 ,x * Y 2y = O t 2 ,y R t 2 ,y *
ε=atan( | O y | / | O x | ) Δφ=arg( O y )arg( O x ),

Metrics