Abstract

We demonstrate the control of enhanced chiral field distribution at the surface of hybrid metallo-dielectric nanostructures composed of self-assembled vertical hexagonal GaAs-based nanowires having three of the six sidewalls covered with Au. We show that weakly-guided modes of vertical GaAs nanowires can generate regions of high optical chirality that are further enhanced by the break of the symmetry introduced by the gold layer. Changing the angle of incidence of a linearly polarized plane wave it is possible to tailor and optimize the maps of the optical chirality in proximity of the gold plated walls. The low cost feasibility of the sample combined to the simple control by using linearly polarized light and the easy positioning of chiral molecules by functionalization of the gold plates make our proposed scheme very promising for enhanced enantioselective spectroscopy applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formation of chiral fields in a symmetric environment

Martin Schäferling, Xinghui Yin, and Harald Giessen
Opt. Express 20(24) 26326-26336 (2012)

Circular dichroism enhancement in plasmonic nanorod metamaterials

D. Vestler, I. Shishkin, E. A. Gurvitz, M. E. Nasir, A. Ben-Moshe, A. P. Slobozhanyuk, A. V. Krasavin, T. Levi-Belenkova, A. S. Shalin, P. Ginzburg, G. Markovich, and A. V. Zayats
Opt. Express 26(14) 17841-17848 (2018)

Second harmonic circular dichroism by self-assembled metasurfaces [Invited]

Mario Bertolotti, Alessandro Belardini, Alessio Benedetti, and Concita Sibilia
J. Opt. Soc. Am. B 32(7) 1287-1293 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
    [Crossref] [PubMed]
  2. H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: from 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
    [Crossref] [PubMed]
  3. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref] [PubMed]
  4. V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
    [Crossref] [PubMed]
  5. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [Crossref] [PubMed]
  6. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
    [Crossref] [PubMed]
  7. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  8. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  9. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
    [Crossref] [PubMed]
  10. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
    [Crossref] [PubMed]
  11. G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
    [Crossref]
  12. M. Bertolotti, A. Belardini, A. Benedetti, and C. Sibilia, “Second harmonic circular dichroism by self-assembled metasurfaces,” J. Opt. Soc. Am. B 32(7), 1287–1293 (2015).
    [Crossref]
  13. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
    [Crossref] [PubMed]
  14. A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
    [Crossref] [PubMed]
  15. A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
    [Crossref] [PubMed]
  16. D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
    [Crossref] [PubMed]
  17. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
    [Crossref] [PubMed]
  18. M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
    [Crossref] [PubMed]
  19. T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
    [Crossref]
  20. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
    [Crossref]
  21. M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Quasistatic limit for plasmon-enhanced optical chirality,” Phys. Rev. B 91(19), 195427 (2015).
    [Crossref]
  22. T. V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina, “Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111),” Nanotechnology 26(27), 275301 (2015).
    [Crossref] [PubMed]
  23. G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).
  24. M. H. Alizadeh and B. M. Reinhard, “Emergence of transverse spin in optical modes of semiconductor nanowires,” Opt. Express 24(8), 8471–8479 (2016).
    [Crossref] [PubMed]
  25. K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
    [Crossref]
  26. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/
  27. D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
    [Crossref]
  28. A. Henneghien, B. Gayral, Y. Désières, and J. Gérard, “Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections,” J. Opt. Soc. Am. B 26(12), 2396–2403 (2009).
    [Crossref]

2017 (2)

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
[Crossref] [PubMed]

2016 (3)

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

M. H. Alizadeh and B. M. Reinhard, “Emergence of transverse spin in optical modes of semiconductor nanowires,” Opt. Express 24(8), 8471–8479 (2016).
[Crossref] [PubMed]

2015 (6)

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Quasistatic limit for plasmon-enhanced optical chirality,” Phys. Rev. B 91(19), 195427 (2015).
[Crossref]

T. V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina, “Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111),” Nanotechnology 26(27), 275301 (2015).
[Crossref] [PubMed]

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

M. Bertolotti, A. Belardini, A. Benedetti, and C. Sibilia, “Second harmonic circular dichroism by self-assembled metasurfaces,” J. Opt. Soc. Am. B 32(7), 1287–1293 (2015).
[Crossref]

2014 (4)

H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: from 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

2013 (2)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

2012 (2)

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[Crossref] [PubMed]

2011 (2)

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

2010 (2)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

2009 (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

A. Henneghien, B. Gayral, Y. Désières, and J. Gérard, “Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections,” J. Opt. Soc. Am. B 26(12), 2396–2403 (2009).
[Crossref]

2008 (1)

Abujetas, D. R.

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

Alizadeh, M. H.

Ameloot, M.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Atwater, H. A.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Belardini, A.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

M. Bertolotti, A. Belardini, A. Benedetti, and C. Sibilia, “Second harmonic circular dichroism by self-assembled metasurfaces,” J. Opt. Soc. Am. B 32(7), 1287–1293 (2015).
[Crossref]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Benedetti, A.

Bertolotti, M.

Biagioni, P.

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Quasistatic limit for plasmon-enhanced optical chirality,” Phys. Rev. B 91(19), 195427 (2015).
[Crossref]

Biris, C. G.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Bisoyi, H. K.

H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: from 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

Blejean, C.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Braz, N.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Brener, I.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Buatier de Mongeot, F.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Celebrano, M.

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Quasistatic limit for plasmon-enhanced optical chirality,” Phys. Rev. B 91(19), 195427 (2015).
[Crossref]

Centini, M.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Chiappe, D.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Collins, J. T.

D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
[Crossref] [PubMed]

Davis, T. J.

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

De Clercq, B.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Désières, Y.

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Duò, L.

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Quasistatic limit for plasmon-enhanced optical chirality,” Phys. Rev. B 91(19), 195427 (2015).
[Crossref]

Ekinci, Y.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Fazio, E.

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Finazzi, M.

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Quasistatic limit for plasmon-enhanced optical chirality,” Phys. Rev. B 91(19), 195427 (2015).
[Crossref]

Fischer, P.

D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
[Crossref] [PubMed]

Fountaine, K. T.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Gayral, B.

Gérard, J.

Giessen, H.

M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Giordano, M.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Guina, M.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

T. V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina, “Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111),” Nanotechnology 26(27), 275301 (2015).
[Crossref] [PubMed]

Guinda, M.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Hakkarainen, T.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Hakkarainen, T. V.

T. V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina, “Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111),” Nanotechnology 26(27), 275301 (2015).
[Crossref] [PubMed]

Haus, J. W.

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

Hendry, E.

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Henneghien, A.

Hentschel, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Hojeij, M.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Hooper, D. C.

D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

Isozaki, A.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kan, T.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Kanda, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Koivusalo, E.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Konishi, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Kuppe, C.

D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Kwon, D. H.

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Larciprete, M. C.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Laukkanen, P.

T. V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina, “Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111),” Nanotechnology 26(27), 275301 (2015).
[Crossref] [PubMed]

Leahu, G.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Li, Q.

H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: from 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

Li Voti, R.

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, Y.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Mäkelä, J.

T. V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina, “Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111),” Nanotechnology 26(27), 275301 (2015).
[Crossref] [PubMed]

Mark, A. G.

D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
[Crossref] [PubMed]

Martella, C.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Matsumoto, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Mertens, J.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Moshchalkov, V. V.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Nemoto, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Osley, E. J.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

Panoiu, N. C.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Petronijevic, E.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Reinhard, B. M.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rizzo Piton, M.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

Sarangan, A.

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

Schäferling, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012).
[Crossref] [PubMed]

Schramm, A.

T. V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina, “Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111),” Nanotechnology 26(27), 275301 (2015).
[Crossref] [PubMed]

Shimoyama, I.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Sibilia, C.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

M. Bertolotti, A. Belardini, A. Benedetti, and C. Sibilia, “Second harmonic circular dichroism by self-assembled metasurfaces,” J. Opt. Soc. Am. B 32(7), 1287–1293 (2015).
[Crossref]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Suomalainen, S.

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Takahashi, H.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Toma, A.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Valev, V. K.

D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
[Crossref] [PubMed]

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Vandenbosch, G. A.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Vandendriessche, S.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Verbiest, T.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Volskiy, V.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Warburton, P. A.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Werner, D. H.

Werner, P. L.

Whitney, W. S.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Yin, X.

Zheng, X.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: from 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

Adv. Mater. (3)

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26(24), 4074–4081 (2014).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

D. C. Hooper, A. G. Mark, C. Kuppe, J. T. Collins, P. Fischer, and V. K. Valev, “Strong rotational anisotropies affect nonlinear chiral metamaterials,” Adv. Mater. 29(13), 1605110 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, C. Sibilia, T. Hakkarainen, E. Koivusalo, M. Rizzo Piton, S. Suomalainen, and M. Guina, “Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold,” Adv. Opt. Mater. 2017, 1601063 (2017).
[Crossref]

Faraday Discuss. (1)

A. Belardini, M. Centini, G. Leahu, E. Fazio, C. Sibilia, J. W. Haus, and A. Sarangan, “Second harmonic generation on self-assembled tilted gold nanowires,” Faraday Discuss. 178, 357–362 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

Nanotechnology (2)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

T. V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, and M. Guina, “Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111),” Nanotechnology 26(27), 275301 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (2)

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Quasistatic limit for plasmon-enhanced optical chirality,” Phys. Rev. B 91(19), 195427 (2015).
[Crossref]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

Phys. Rev. Lett. (2)

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires,” Phys. Rev. Lett. 107(25), 257401 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Sci. Rep. (1)

A. Belardini, M. Centini, G. Leahu, D. C. Hooper, R. Li Voti, E. Fazio, J. W. Haus, A. Sarangan, V. K. Valev, and C. Sibilia, “Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires,” Sci. Rep. 6(1), 31796 (2016).
[Crossref] [PubMed]

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Other (2)

G. Leahu, E. Petronijevic, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, S. Suomalainen, M. Guinda, and C. Sibilia, “Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires,” Sci. Rep. (to be published).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of NW investigated: it is defined by the radius r (equal to the side) and the length L. (b) Absorption cross section of the single NW: dependence of 2µm long NW on the radius. (c) Absorption cross section of the single NW: dependence on the length for r = 75nm. (d) Absorption cross section for L = 6µm and r = 75nm. (e) Electric and magnetic field distributions for the resonance at λ = 796nm for p and s polarizations.
Fig. 2
Fig. 2 (a) Electric field in the NW at the resonance. (b) Magnetic field in the NW at the resonance. (c) Chiral field distribution at the normal incidence, for s-polarization, normalized with respect to the value for a free space propagating circularly polarized wave. (d) Chiral field distribution at the normal incidence, for p-polarization, normalized with respect to the value for a free space propagating circularly polarized wave.
Fig. 3
Fig. 3 (a) C distribution at the resonance for s polarization at 5° incidence in xz plane. (b) C distribution at the resonance for s polarization at 10° incidence in xz plane. The oblique incidence leads to the concentration of the chiral field in (x-y+) part of the diagram. (c) C distribution at the resonance for p polarization at 5° incidence in xz plane. (d) C distribution at the resonance for p polarization at 10° incidence in xz plane. In all cases C is normalized with respect to the value for a free space propagating circularly polarized wave.
Fig. 4
Fig. 4 (a) Schematic of NW of same L and D, partially covered with gold. The thicknesses of the sidewalls are tI = 20nm and tII = 10nm, and the cap is supposed to be uniformly 20nm thick. (b) C distribution at the resonance for p polarization and normal incidence. (c) C distribution at the resonance for s polarization and normal incidence. In all cases C is normalized with respect to the value for a free space propagating circularly polarized wave.
Fig. 5
Fig. 5 C distribution dependence on the incidence angle, at the resonance with s polarization. Changing the sign of the angle changes the sign and position of the increased C distribution. In all cases C is normalized with respect to the value for a free space propagating circularly polarized wave.
Fig. 6
Fig. 6 C distribution dependence of GaAs-AlGaAs core-shell NW on the substrate, at the resonance. The incident light is p polarized, impinging under a) 20° incidence, and b) −20° incidence. In all cases C is normalized with respect to the value for a free space propagating circularly polarized wave. Insets are showing xy cross section of C and |E| distribution (|E| is normalized with respect the incident wave amplitude). For clarity, GaAs/AlGaAs core-shell are painted in black, while the golden part is presented in grey.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C= ε 0 ω 2 Im[ E * ( r ) B ( r ) ].

Metrics