Abstract

We present a real-time measurement technique, based on time-stretching for measuring the temporal dynamic of ultrafast absorption variations with a sampling-rate of up to 1.1 TS/s. The single-shot captured data are stretched in a resonator-based time-stretch system with a variable stretch-factor of up to 13.8. The time-window of the time-stretch system for capturing the signal of interest is about 800 ps with an update-rate of 10 MHz. An adapted optical backpropagation algorithm is introduced for reconstructing the original unstretched event. As proof-of-principle the temporal characteristic of a picosecond semiconductor saturable absorber mirror is measured: The real-time results agree well with the results of a conventional pump-probe experiment. The time-stretch technique potentially allows to gain access to a large field of ultrafast absorption variations like semiconductor charge carrier dynamics, irreversible polymerization processes, and saturable absorber materials.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Phillips, “Data acquisition system,” US Patent 4,156,809 (May29, 1979).
  2. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085 (2003).
    [Crossref]
  3. A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
    [Crossref]
  4. K. Goda, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109(29), 11630–11635 (2012).
    [Crossref] [PubMed]
  5. G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
    [Crossref]
  6. M. Balkanski and R. Wallis, Semiconductor Physics and Applications (Oxford University Press, 2000).
  7. J. Guillet, Polymer Photographics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules (Cambridge University Press, 1985).
  8. J Mueller, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
    [Crossref] [PubMed]
  9. U. Keller and et al., “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  10. G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” APL 86(8), 081105 (2005).
  11. J. Wang, “Nonlinear pulse-shaping phenomena of semiconductor saturable absorber mirror,” APL 89(23), 231106 (2005).
  12. F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Technol. 47(7), 1309–1314 (1999).
    [Crossref]
  13. J. Chou, “Femtosecond real-time single-shot digitizer,” APL 97, 161105 (2007).
  14. S. Gupta and B. Jalali, “Time stretch enhanced recording oscilloscope,” APL 97, 041105 (2009).
  15. A. M. Fard and et al., “All-optical time-stretch digitizer,” APL 101(5), 051113 (2012).
  16. S. Weber, “Magnification dependent dispersion penalty studied with resonator-based time-stretch oscilloscope,” J. Lightwave Technol. 32(20), 3618–3622 (2014).
    [Crossref]
  17. U. Keller, “Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. letters 17(7), 505–507 (1992).
    [Crossref]
  18. L. Berger, Semiconductor Materials (CRC Press, 1996).
  19. U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58(5), 347–363 (1994).
    [Crossref]
  20. D. Kopf, “Diode-pumped femtosecond solid state lasers based on semiconductor saturable absorbers,” in Photonics West (ISOP, 1996), pp. 11–22.
  21. S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008).
    [Crossref] [PubMed]
  22. J. Stigwall and S. Galt, “Signal reconstruction by phase retrieval and optical backpropagation in phase-diverse photonic time-stretch systems,” J. Lightwave Technol. 25(10), 3017–3027 (2007).
    [Crossref]

2016 (1)

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

2014 (2)

2013 (1)

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

2012 (2)

K. Goda, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

A. M. Fard and et al., “All-optical time-stretch digitizer,” APL 101(5), 051113 (2012).

2009 (1)

S. Gupta and B. Jalali, “Time stretch enhanced recording oscilloscope,” APL 97, 041105 (2009).

2008 (1)

2007 (2)

2005 (2)

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” APL 86(8), 081105 (2005).

J. Wang, “Nonlinear pulse-shaping phenomena of semiconductor saturable absorber mirror,” APL 89(23), 231106 (2005).

2003 (1)

1999 (1)

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Technol. 47(7), 1309–1314 (1999).
[Crossref]

1996 (1)

U. Keller and et al., “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1994 (1)

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58(5), 347–363 (1994).
[Crossref]

1992 (1)

U. Keller, “Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. letters 17(7), 505–507 (1992).
[Crossref]

Balkanski, M.

M. Balkanski and R. Wallis, Semiconductor Physics and Applications (Oxford University Press, 2000).

Berger, L.

L. Berger, Semiconductor Materials (CRC Press, 1996).

Bhushan, A.

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Technol. 47(7), 1309–1314 (1999).
[Crossref]

Chou, J.

J. Chou, “Femtosecond real-time single-shot digitizer,” APL 97, 161105 (2007).

Coppinger, F.

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Technol. 47(7), 1309–1314 (1999).
[Crossref]

Fard, A. M.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

A. M. Fard and et al., “All-optical time-stretch digitizer,” APL 101(5), 051113 (2012).

Galt, S.

Goda, K.

K. Goda, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Guillet, J.

J. Guillet, Polymer Photographics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules (Cambridge University Press, 1985).

Gupta, S.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

S. Gupta and B. Jalali, “Time stretch enhanced recording oscilloscope,” APL 97, 041105 (2009).

S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008).
[Crossref] [PubMed]

Han, Y.

Herink, G.

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

Jalali, B.

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

S. Gupta and B. Jalali, “Time stretch enhanced recording oscilloscope,” APL 97, 041105 (2009).

S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008).
[Crossref] [PubMed]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085 (2003).
[Crossref]

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Technol. 47(7), 1309–1314 (1999).
[Crossref]

Keller, U.

U. Keller and et al., “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58(5), 347–363 (1994).
[Crossref]

U. Keller, “Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. letters 17(7), 505–507 (1992).
[Crossref]

Kopf, D.

D. Kopf, “Diode-pumped femtosecond solid state lasers based on semiconductor saturable absorbers,” in Photonics West (ISOP, 1996), pp. 11–22.

Mueller, J

J Mueller, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref] [PubMed]

Phillips, D. T.

D. T. Phillips, “Data acquisition system,” US Patent 4,156,809 (May29, 1979).

Richter, W.

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” APL 86(8), 081105 (2005).

Ropers, C.

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

Solli, D.

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

Steinmeyer, G.

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” APL 86(8), 081105 (2005).

Stibenz, G.

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” APL 86(8), 081105 (2005).

Stigwall, J.

Wallis, R.

M. Balkanski and R. Wallis, Semiconductor Physics and Applications (Oxford University Press, 2000).

Wang, J.

J. Wang, “Nonlinear pulse-shaping phenomena of semiconductor saturable absorber mirror,” APL 89(23), 231106 (2005).

Weber, S.

Adv. Mater. (1)

J Mueller, “Polymerization kinetics in three-dimensional direct laser writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref] [PubMed]

APL (5)

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” APL 86(8), 081105 (2005).

J. Wang, “Nonlinear pulse-shaping phenomena of semiconductor saturable absorber mirror,” APL 89(23), 231106 (2005).

J. Chou, “Femtosecond real-time single-shot digitizer,” APL 97, 161105 (2007).

S. Gupta and B. Jalali, “Time stretch enhanced recording oscilloscope,” APL 97, 041105 (2009).

A. M. Fard and et al., “All-optical time-stretch digitizer,” APL 101(5), 051113 (2012).

Appl. Phys. B (1)

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58(5), 347–363 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller and et al., “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Trans. Microwave Theory Technol. (1)

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theory Technol. 47(7), 1309–1314 (1999).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Nat. Photonics (1)

G. Herink, B. Jalali, C. Ropers, and D. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

Opt. Lett. (1)

Opt. letters (1)

U. Keller, “Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. letters 17(7), 505–507 (1992).
[Crossref]

Proc. Natl. Acad. Sci. (1)

K. Goda, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Other (5)

M. Balkanski and R. Wallis, Semiconductor Physics and Applications (Oxford University Press, 2000).

J. Guillet, Polymer Photographics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules (Cambridge University Press, 1985).

L. Berger, Semiconductor Materials (CRC Press, 1996).

D. Kopf, “Diode-pumped femtosecond solid state lasers based on semiconductor saturable absorbers,” in Photonics West (ISOP, 1996), pp. 11–22.

D. T. Phillips, “Data acquisition system,” US Patent 4,156,809 (May29, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Time-stretch concept: A broadband laser-source is prechirped in a first dispersive element D1 and then modulated with the signal of interest. This modulated and prechirped signal can be stretched in time by a second dispersive element D2. The stretched signal can be detected using a commercially available photo-diode (PD) and an oscilloscope.

Fig. 2
Fig. 2

Experimental setup with the resonator-based time-stretch system (fs-fiber laser, dispersion 1, dispersion 2 inside a ring-resonator with optical coupler and optical switch, and photo-diode (PD)), the ultrafast pump-source (chirped pulse amplifier with optical parametric amplifier) and an 80 GS/s oscilloscope. Solid lines: Optical fibers, dashed lines: Free space.

Fig. 3
Fig. 3

Due to the first dispersive element the spectral pulse shape (blue) is transformed from frequency-domain to time-domain (red).

Fig. 4
Fig. 4

Post-processing algorithm for elimination the distortion due the impulse-response of the time-stretch system. The measured stretched temporal dynamic S(t) is combined with the Gaussian envelope E(t) of an ideal pulse propagating through the system. With the dispersion induced phase-shift e the complex pulse E(t) = (E0 · S)e can be propagated back through a group velocity dispersion (GVD) D = −D2.

Fig. 5
Fig. 5

Modulated (red) and reference (blue) pulse after a time-stretching of M = 7.4 in the unstretched time-domain. The increase of the reflected amplitude after arrival of the pump-pulse at t = 0 ps is clearly visible.

Fig. 6
Fig. 6

Backpropagated signals after N = 2 (a) to N = 8 (d) round-trips (red). The rise- and the fall-time agree well with the pump-probe results (blue) for each magnification.

Fig. 7
Fig. 7

Without (purple) the backpropagation algorithm the system-impulse-response is contained in the real-time data with a sampling-rate of 592 GS/s (a). Therefore, the post-processing algorithm is used to eliminate the slow rise-time and the oscillations (red). With this correction the real-time results are in very good agreement with the pump-probe result (blue). (b) The numerical calculation of the time-stretch system (red) shows the same oscillation characteristic as the real-time measurements (blue).

Fig. 8
Fig. 8

Relation between stretch-factor and signal-to-noise ratio for the first 8 round-trips.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M = 1 + N D 2 D 1 .

Metrics